Holzbaur, Nogales
Run for ASCB President
Eight Candidates Seek Council Seats

The two nominees for ASCB President-Elect are Erika L.F. Holzbaur, University of Pennsylvania Perelman School of Medicine, and Eva Nogales, University of California, Berkeley/HHMI and Lawrence Berkeley National Laboratory. The elected candidate will serve on the Society’s Executive Committee as President-Elect in 2019, ASCB President in 2020, and Past President in 2021.

Election, continued on page 5

ASCBC Issues Comments on Next Generation Researchers Initiative

Soon after the U.S. National Institutes of Health (NIH) announced the creation of the Grant Support Index (GSI) in May 2017, the ASCB Executive Committee asked the Public Policy Committee (PPC) to review the new proposal and provide them with a position paper. The GSI would have limited the amount of NIH support given to any individual investigator. The GSI was intended to maximize the impact of the public dollars we spend and reverse the trend of declining grant funding for early- and mid-career investigators. The imbalance in grant funding was demonstrated in data collected by the NIH showing that over the last 25 years the percentage of investigators over the age of 60 has increased while the percentage of mid- and early-stage NIH investigators has decreased. After a month-long discussion and request for feedback, the NIH made the decision to abandon the GSI program and instead implement the Next Generation Researchers Initiative (NGRI). Unlike the GSI, this program would not limit total NIH support for any one investigator, but instead aims to target funds toward investigators who are perceived to be most at risk of being unable to continue their research careers for lack of funding—those with 10 years or less of NIH Research Project grant support. The source of funds for the NGRI was not immediately clear.

The ASCB has members from all career stages, which made it challenging for the PPC to identify recommendations that addressed the needs of all members. During its work, the PPC solicited a series of opinion pieces from four members interested in solutions to the current imbalance and provided all ASCB members with the opportunity to also share their comments. You can read these opinion pieces at www.ascb.org/opinions-on-the-gsi.

Initiative, continued on page 14
Managing Science in the Biotech Industry

A course for PhD students and postdocs offered by the American Society for Cell Biology and Keck Graduate Institute

July 9-14, 2018 • Claremont, CA

Learn about the culture and infrastructure of life science companies through MBA-style case-based teaching, professional development workshops, and a team-based project.

Apply at ascb.org/biotech-course
CEO’S Column

What Scientific Publishing Could Look Like

by Erika C. Shugart

If we were to create a way to share scientific research progress today, what would it look like? In this age of immediate digital publishing, it probably wouldn’t take months. In these times of user-generated content, it would probably be author-controlled. In an era where we post comments about everything from our lunch to the news, we would likely find a way to make it transparent and open. And in this world in which content is so easily shared, curation would be separate from publishing.

Problems with Publishing

We have all heard the complaints about the current publishing system—it is too slow; it is fraught with occasional poor-quality, arbitrary review; it is dominated by a small number of highly selective journals; and it puts pressures on scientists that may contribute to the reproducibility crisis. I recently had a chance to contemplate what the future of scientific communication might look like during a meeting convened by ASAPBio and HHMI entitled Transparency, Recognition, and Innovation in Peer Review in the Life Sciences, which brought together societies, publishers, editors, researchers, and other interested parties to discuss what can be done to improve peer review and publishing.

The journal review process currently has two functions—assessment of the technical quality of the work, and a gatekeeper role that determines the fit with the journal’s editorial lens. In highly selective, high-profile journals these two functions are combined at times to the detriment of the quality assessment function. If reviewers focus too much on the gatekeeper role and attempt to assess the impact rather than the technical quality of the work, this can result in poor quality reviews that focus on the fit of the article rather than improvement of the quality. Reviews of this type don’t help the authors improve their science, which is truly the purpose of peer review.

Another common problem that can result from reviewers being overly concerned about impact is that to make the paper “worthy” of the journal authors are asked to do additional experiments that don’t improve the quality of the science or the validity of the conclusions. This can result in months of publishing delays as the authors attempt to add material to the manuscript. In the end the manuscript may still be rejected, which leads the authors to start the process again with a new journal, reconsider the structure of their manuscript and rewrite it, or both.

Open peer review is designed to provide greater transparency of a journal’s editorial process....

New Approaches

The peer review problems described above do not afflict all publishing experiences. A number of publishing outlets are taking new approaches. One of the newest is bioRxiv, modeled after arXiv, which has served the physical sciences for over 25 years. bioRxiv publishes preprints and gives authors control of when their results go public. It allows commenting, but not the peer review function. Another venture, F1000Research, is a publishing platform that makes both the article and post-publication reviews public.

Closer to the traditional publishing model, a number of journals are making the reviews public to a variety of degrees, including the...
EMBO journals, the *British Medical Journal*, and several Royal Society journals. Open peer review is designed to provide greater transparency of a journal’s editorial process in the hopes that this will raise the quality and civility of the reviewer comments. It encompasses a wide range of options from open identities (the author and reviewers know each other’s identities), open reports (the reviews are made public but the reviewer identities are masked), open interaction (authors and reviewers communicate directly), and the *eLife* model in which reviewers are known to each other and work together to provide clear instructions to authors, to many options for post-publication commenting.

Concerns about open peer review include the possibility of reviewers writing falsely positive reviews for powerful authors and the related concern of authors taking revenge on reviewers due to bad reviews. Based on the discussions that took place during the Transparency, Recognition, and Innovation in Peer Review in the Life Sciences meeting, many of these concerns may be unfounded, as the journals that already offer this have had good experiences and positive feedback from authors.

In the near future, authors and reviewers should expect to see an expansion in the number of journals offering a variety of open peer review, as a number of significant titles have indicated that they plan to increase transparency by offering the option to share peer reviews.

Journals Run by Scientists for Scientists

Another alternative outlet is society journals, which are run by scientists for scientists, often have editorial policies that emphasize the technical quality over the unexpectedness of the science, and take pride in constructive peer review. For example, *Molecular Biology of the Cell* has an editorial policy that was expressed by its founding editor, David Botstein: “Is it new and is it true?” Additionally any revenue generated by the journals goes back to the societies and is used to create programs that help further the scientific profession.

If society journals and other avenues are such a publishing nirvana, then why does anyone go anywhere else? The answer is, of course, the impact factors of the highly selective journals and the associated prestige that the names of such journals bring to their offshoots. Scientists could have a different publishing experience if they choose, but the pressures, particularly for early career scientists, to get publications in high-profile journals on their CV keep them trying for a limited number of journals.

The perniciousness of the improper use of the journal impact factor was highlighted in 2013 with the publication of the San Francisco Declaration on Research Assessment (DORA), which was formulated at the 2012 ASCB Annual Meeting. However, not much has changed in the past five years. As the cartoon character Pogo said, “We have met the enemy and he is us.” Scientists have the power to change the assessment system, since they are often asked to assess each other in grant reviews, hiring decisions, and promotion and tenure decisions, but this will require cultural change. DORA has now been revitalized by new funding and in-kind support from ASCB, Cancer Research UK, the Company of Biologists, *eLife*, EMBO, F1000Research, Hindawi, PLOS, and Wellcome. The effort, which is housed at ASCB, is taking the lead on documenting and spreading best practices. We hope that by documenting best practices and sharing them with researchers, funders, and university administrators we will be able to lower the use of the impact factor as a shortcut to assessment of scientific quality and improve the outcomes for all scientists.

Scientific publishing has changed radically in the last 20 years with digital publishing, open access, and other innovations, but expect the disruption in publishing to continue and even accelerate as new tools and platforms become available. Some trends that I expect to see expand in the near future are open peer review and separate curation services for preprints and perhaps even journal articles. It is anyone’s guess what scientific publishing will look like 20 years from now, but it is in our power to create a system that is efficient, rewards good science over flashy results, and invests back into the scientific community.
Also on the ballot are eight candidates (see below) running for four Council seats. This year the Council, as empowered by the ASCB Bylaws, has segmented the ballot to ensure that one seat is filled by someone whose specialty is education. Those nominees will run against each other for one seat on Council. The top three vote recipients of the other six Council nominees will be elected according to traditional election procedures. All who are elected will start three-year terms on January 1, 2019.

ASCB will email a link to the Society’s electronic ballot and candidate biographies to regular, postdoc, graduate student, educator, and emeritus members on April 2. The election will close on April 30, and results will be announced shortly thereafter. Please contact the ASCB if you do not receive the email.

ASCB 2019 Council Nominees

Education Nominees

- **Ivan Dikic**
 Goethe University Frankfurt - Medical School, University Hospital, Frankfurt/Main, Germany

- **Anna Huttenlocher**
 University of Wisconsin-Madison

- **Satyajit Mayor**
 Tata Institute for Fundamental Research and Institute for Stem Cell Science and Regenerative Medicine, Bangalore

- **Karen Oegema**
 University of California, San Diego, and Ludwig Institute for Cancer Research

- **Alejandro Sánchez-Alvarado**
 Stowers Institute for Medical Research/HHMI

- **Omar Quintero**
 University of Richmond

- **Kimberly Tanner**
 San Francisco State University

Look for Our New Look!

The next issue of the ASCB Newsletter will unveil a complete redesign and new content. Each issue will have a theme, beginning with a focus on Careers in the June issue. Soon your mailbox will be a lot more exciting!
FOLLOW THE ARC OF SCIENTIFIC DISCOVERY....
Join us for the 2018 ASCB|EMBO Meeting, focusing on cell biology as the fundamental basis of biology and exploring more specialized fields, such as neurobiology and stem cell biology.

KEYNOTE LECTURE

Sean J. Morrison
Director, Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center/HHMI

SYMPOSIA

SUNDAY, DECEMBER 9

Nuclear Organization 8:00–9:30 am
Ibrahim I. Cissé, Massachusetts Institute of Technology
Ana Pombo, Berlin Institute for Medical Systems Biology
Arjun Raj, University of Pennsylvania

Cell Migration 9:45–10:45 am
Anna Hüttenlocher, University of Wisconsin, Madison
Michael Sixt, IST Austria

Neuronal Cell Biology 9:45–10:45 am
Erika L.F. Holzbaur, University of Pennsylvania
J. Paul Taylor, St. Jude Children’s Research Hospital/HHMI

MINISYMPOSIUM/MICROSYMPOSIUM TOPICS

Autophagy and Proteostasis
Biology of Stem Cells
Cell Cycle, Cell Division, Cell Death
Cellular Stress Responses
Cilia and Flagella
Cytoskeletal, Motility, and Cell Mechanics
Evidence-Based Education
Membrane Organization and Trafficking
Metabolism
Morphogenesis and Multicellular Interactions
Neurobiology/Neurodegeneration
Neuronal Cell Biology
Nucleus
Pathogens
Phase Transitions
Stem Cells and Organoids

WANT TO GIVE A TALK?

On average 30% of first-deadline abstracts are selected for a Minisymposium or Microsymposium talk.

IMPORTANT DATES AND DEADLINES

May 15 Registration and abstract submission opens
May 15 Special Interest Subgroup and Career Enhancement Programming Applications Deadline. Visit the website to submit an application.
August 1 Abstract Submission Deadline (Minisymposium/Microsymposium talk and/or poster consideration)
September 4 Abstract Submission Deadline (Poster Only)
September 4 Travel Award Deadline
October 4 Early Registration Deadline (rates go up on October 5)
October 10 Final Abstract Submission (Poster Only)
November 16 Hotel Reservation Deadline. ASCB and EMBO’s Official Housing Partner is onPeak. Be sure to book through onPeak and book early for the best rates!

JOIN THE CONVERSATION #ASCBEMBO18

https://ascb-embo2018.ascb.org

MINISYMPOSIUM/MICROSYMPOSIUM TOPICS

Autophagy and Proteostasis
Biology of Stem Cells
Cell Cycle, Cell Division, Cell Death
Cellular Stress Responses
Cilia and Flagella
Cytoskeletal, Motility, and Cell Mechanics
Evidence-Based Education
Membrane Organization and Trafficking
Metabolism
Morphogenesis and Multicellular Interactions
Neurobiology/Neurodegeneration
Neuronal Cell Biology
Nucleus
Pathogens
Phase Transitions
Stem Cells and Organoids
Ballroom 6AB, San Diego Convention Center, San Diego, CA

Registration and abstract submission opens May 15.*

Abstract deadline is Wednesday, October 12. You must be registered to attend to submit an abstract.

* You must be an ASCB member to attend the doorstep meeting. Discounted registration is available to those who also register for the 2018 ASCB|EMBO Meeting. The doorstep meeting is limited to the first 225 registrants.

Application Process for Career Enhancement Programming at the 2018 ASCB|EMBO Meeting

If you are hoping to organize a career enhancement session at the upcoming meeting in San Diego, you must submit an application online by May 15. This process is intended to avoid overlapping programs and improve scheduling. All applications will be reviewed by a committee, and notifications will be sent to applicants by June 15.

ASCB members, ASCB committees, and outside organizations are invited to submit applications for sessions that focus on education, career development, international relations, and/or diversity in the scientific workforce. The committee will review applications on the basis of relevance, intended audience, and audience engagement. Applications are required for programs with external grant funding as well.

The application is now available online at https://ascb-embo2018.ascb.org.

Want to Organize a Special Interest Subgroup?

ASCB members should apply by May 15 to organize a subgroup at the ASCB|EMBO meeting. Visit ascb-embo2018.ascb.org/subgroups for details.
Celldance Video Play-by-Play: What It’s Like to Create a Celldance Video

There is no doubt that we live in a society that is increasingly reliant on digital media, allowing us to learn by way of compelling visuals in easily digestible video formats at rapid speeds. With sites like YouTube, you can use videos to learn how to fix your car or design rustic furniture, and perhaps even to better understand advanced scientific concepts. Celldance, ASCB’s famed video program, aims to help ASCB member labs communicate their research to and educate the public about cell biology.

The program, run by the Public Information Committee (PIC), has been around for over 10 years and offers $1,000 production grants to three selected labs. Celldance not only engages the public, it facilitates collaboration in the cell biology community through the filmmaking process. Ever been curious what it would be like to work on a Celldance film? Now’s your chance to find out!

The Selection Process
Starting in early spring, with the proposal deadline at the beginning of summer, the ASCB, teamed up with PIC, advertises the program on social media and in other Society communications, urging member labs to submit proposals. In June, a few members of PIC and select ASCB staff members score the proposals based on accessibility, relevance, breadth of impact, storytelling, and creativity. A couple of weeks later, the three chosen labs are contacted by email and announced on ASCB social media channels.

The Celldance Producer
Each year, Celldance picks a producer to work with each of the labs. The producer’s role is to facilitate communication between the team and the ASCB staff as well as help the labs keep their videos to the time limit, create a storyboard, and make sure that the story remains focused. It’s a great way to build leadership skills as well as to allow members to collaborate within their own communities. Sometimes this can lead to surprising revelations about the researchers themselves. Janet Iwasa, a 2018 Celldance Producer, TED fellow, and well-known molecular animator notes, “I think one of the things that comes out of the process is that you see these different, sometimes hidden talents of different members of a research group…. Doing Celldance is definitely great for communicating your research and gaining visibility for your lab, but it’s also an awesome way to let labs be creative and show off the personality of the group.” Interested in being a Celldance producer? Email us at celldance@ascb.org.

Photos and simulations, like these from the 2018 Celldance film Neisseria meningitidis: At Home inside Human Capillaries are often used to help explain difficult concepts.
Creating the Film
Not only do people enjoy watching the films, but it is something truly special for the researchers to share what they love with the public, as well as with their own scientific communities. Cell biologists are often questioned about the importance of basic research, and Celldance videos give them a chance to explain why what they do is significant. Creating a Celldance film involves developing a storyboard and then capturing the footage, inside and outside the lab, and takes around 1.5 hours per week spread over four to five months, according to previous filmmakers. That footage is then assembled into a rough-cut format and polished by a professional videographer.

Dyche Mullins, co-creator of the 2018 Celldance film *We Know Life by Motion* explained that the driving force of his message was “…to convey the fundamental importance of molecular and cellular motion to a general audience.” He also mentioned, “When non-cell biologists ask me about my work, and I say that I study how cells move I often receive a blank look in return. Sometimes they even ask, ‘Is that important?’” Mullins’ video speaks for itself, with stunning visuals, innovative techniques, and a storyline that can appeal to scientists as well as non-scientists.

Mullins also explained that he benefited from the collaboration with Iwasa, his producer, and that they are working together to create an expanded animation from the film.

Presentation/The Final Product
The finishing touches are put on the Celldance videos in November, and they are prepped to premiere at the ASCB|EMBO meeting in December. The videos get a good amount of publicity at and after the meeting: They have their own press release, and are often covered by several news outlets. Celldance videos have historically been covered in *The Scientist*, Vice Motherboard, the NIH Director’s Blog, and have even been tweeted out by Francis Collins himself. This year, Celldance got a shout-out from a Nature Career Feature on how to get into scientific film-making. Along with the official press around the videos, #Celldance videos also benefit from buzz on social media.

Overall, the visibility Celldance gives researchers is enough to make the program worthwhile. However, the true purpose of Celldance—communicating the impact of scientific research—is even more important.

Submit to Celldance
Thinking about submitting a Celldance proposal, or know someone who would make a great video? All you have to do is send us a one- or two-page story outline (in a narrative, storyboard or script format) plus a short video sample of your most beautiful/most exciting cell imaging. (These samples do not have to be the video sequences that you will use in your actual Celldance video.)

Email us at celldance@ascb.org or visit ascb.org/celldance to submit your proposal.

—Leeann Kirchner
Increasing American women’s representation and impact in scientific and technical fields is not only a national imperative—it’s a global goal, and it requires women in STEM to go global!

When it comes to international scientific collaborations, women in U.S. institutions face barriers such as gender bias and inequity much to the extent that they do at home, but they may also have particular advantages conducting research outside the United States. What exactly are the advantages and how can women optimize them?

U.S. Research Is International Research

In the past 17 years, we have seen the percentage of U.S.-authored STEM research papers with international co-writers more than double—from 12% to 32%—and researchers from overseas currently account for a third of U.S. STEM researchers. In 2016, one half of postdocs in the United States were from abroad, working in the United States on temporary visas. Given the crisis of employment opportunities after the postdoc stage, the majority of these international scientists do not secure jobs in the United States. Rather, they branch out and populate labs around the world, thus laying the foundation for potential follow-up collaborations.

We see a particularly robust flow of postdoc researchers (and graduate students for that matter) from China, which has led to a global vision and strategic partnerships between the United States and institutions in Asia and the Pacific Rim, most notably Cold Spring Harbor Conferences Asia (CSHCA), which is centered in Suzhou, China, and reflects research happening in the Cold Spring Harbor Laboratory’s New York campus. CSHCA hosts a number of conferences and training workshops on a variety of biomedical research topics, including molecular biology, molecular genetics, and developmental and cell biology.

Clearly, academic internationalization is happening, but women are not participating on par with male colleagues. In an interview with The Chronicle of Higher Education, Kathrin Zippel sheds light on the dynamics behind these trends and numbers. Her work examines women in STEM and is positioned in the social sciences, specifically the field of sociology. Hence, her work may be seen as a bridge between two academic spheres, the hard sciences and the social sciences, which incorporate a great deal of qualitative research methods, such as focus groups, interviews, and participant observation. Bringing together research from these two realms of the academy, which may appear disparate yet are in many ways critically connected and complimentary, can offer a broader perspective on academic women’s experiences and ways to address bias and inequality that hold them back because of their gender. Zippel’s work is exemplary in this sense and offers a “strategy to transcend gender inequities.” She has a simple, straightforward suggestion—that women pursue more international collaborations. However, it’s not that easy.

Collaboration Is Critical

Cutting-edge STEM research tackling the
biggest global problems and coming out of projects at institutions such as the International Vaccine Institute and the CERN’s Human Genome Project (HGP) are decidedly international, making the politics of international collaborations an important issue to consider when pursuing a career in science today. The HGP is an example of a major coordinated effort involving many smaller labs around the world; they collectively address the challenge by dividing it up. There are significant differences between physics projects that tend to have one large lab and biology projects that require collaboration of small labs. HGP is the latter and is an example of how essential collaborations are.

Until such a time in the future when bioscience operates in big labs with big budgets tackling singular big questions, the reality is that collaborations are critical. In addition to seeking major global collaborations at the advanced career stage, early-career U.S. researchers can take advantage of plentiful opportunities to attend courses and workshops in Europe, including those at the European Molecular Biology Laboratory (EMBL), which offers international summer programs and states that fostering and maintaining international relations is of “key importance” to its overall mission.4 The Federation of American Societies for Experimental Biology (FASEB) also facilitates international opportunities.

Traveling is not always an option for U.S.-based researchers, but that doesn’t mean they cannot cultivate an international outlook or build a network from home. The huge flow of non-U.S. STEM graduate students, postdocs, and researchers into U.S. institutions for decades means that there is an international presence here on U.S. soil. Tap into that! Get to know where your non-U.S. colleagues are from and how they do science in their home countries. Interpersonal connections can lead to international collaborations!

Perhaps not surprisingly, U.S. researchers do not collaborate as much as European researchers, and women do not have the same opportunities to collaborate internationally as men do. These conditions are as harmful and limiting to individual researchers’ careers as they are to the field of scientific knowledge at large.

If women are not optimally participating, projects like the HGP cannot yield optimal solutions to the world’s biggest problems.

The prestige and motivation to pursue international collaborations differs dramatically between the United States and Europe. For example, based on her research with women in interviews and focus groups, Zippel writes that in her native Germany, American researchers are perceived of as “representatives of the gold standard of what real science is.” She suggests this is a major advantage that all U.S. scientists have in initiating international collaborations. However, her qualitative research with focus groups in the United States reveals that international collaborations are undervalued in U.S. institutions and viewed as a “guilty pleasure that involves exotic travel but are not meaningful research.”

Women are further disassociated from academic internationalization because of the misconception that having a family precludes them from travel. This ethos may account in part for why male applicants for large National Science Foundation grants so greatly outnumber female applicants.5 These negative perceptions and biases may be ameliorated over time as we see an increase of U.S. universities with international campuses that benefit from generous funding and strategic locations in countries around the world. New York University (NYU) has well-resourced campuses in Shanghai and Abu Dhabi, Yale and Duke have branches in Singapore, and Georgetown University has a well-established campus in Qatar. Events and opportunities abound in these sites. For example, in spring 2018 NYU Abu Dhabi is hosting a conference entitled The Gender Gap: Causes, Consequences, and Solutions for Academia that brings together practitioners and thought leaders in STEM research, faculty diversity, and gender equity in the sciences.

In Zippel’s new book, Global Science: Advancing Academic Careers through International Collaboration (Stanford University Press, 2017), which is an excellent read for women researchers and scientists in STEM fields, she delves deeply into the gendered challenges associated with international collaborations. She identifies
and discusses in details some of the structural and organizational barriers that keep women from collaborating and contributing globally on par with men. She coined the phrase glass fences, a useful concept and catchy term that could easily gain traction within the academy in future discourse on gender and science. Glass fences are “gendered obstacles women face as they attempt to conduct international research. These are as invisible as glass ceilings encountered by female managers, academics, and politicians when they try to climb the hierarchical ladders of their organizations.”

Some glass fences are global while others are unique to the American academy and the beliefs and values that shape its departmental politics, hiring processes, and funding opportunities. For example, sexual harassment is defined and dealt with in particular ways in the United States, but what constitutes sexual harassment internationally can be unclear and become complicated by cross-cultural differences, misunderstandings, and unfamiliar norms and behaviors in non-U.S. contexts. There is research on the politics of gender in international collaborations that deals directly with the matter of sexual harassment; however we will not go into those details here.6

The .edu Bonus
On the positive side, women at American academic institutions may have a golden egg of sorts, and it might not be what you think. In spite of having their career trajectories halted by glass fences, being consistently outnumbered in grant applications and awards, and being downright discouraged, women in STEM in the United States are making notable gains in overseas research opportunities. Zippel attempts to explain this phenomenon in a provocative way, with what she calls the “.edu bonus,” another useful and catchy phrase she has coined. The “.edu bonus” is what it appears to be—a reference to a Web domain and email address associated with U.S. academic institutions. Zippel argues that the email address itself gives women at U.S. institutions an advantage. Think back to the perception in Germany, for example, of American researchers as “representatives of the gold standard of what real science is.” International teams that want a top-notch collaborator see the “.edu” email address and it signals a potential for excellence.

Being sought after for your email address can be a first step. Once women are engaged in international collaborations, their experiences tend to be very positive in the sense that having the .edu bonus is more of an advantage than their gender is a disadvantage. Zippel’s work sheds light on how women researchers from the United States are escaping the gender-based biases and circumventing the institutional politics that hold them back at home.

Zippel’s work digs into the subcultures and politics of global scientific knowledge production with specific attention to gender and inequality. Her objective is to highlight asymmetrical power relations and the sometimes subtle yet systemic patterns of exclusion that result in structural inequalities. I strongly recommend her books, which are both readable and thought provoking.

—Leigh Llewellyn Graham, New York University

Footnotes and References
2www.csh-asia.org/overview.html.
5While working with the National Science Foundation Advance grants and conducting research for her 2006 book, The Politics of Sexual Harassment: A Comparative Study of the United States, the European Union, and Germany, Zippel found that male applicants outnumbered females fourfold.
Have you considered where the money goes when you publish?

When you publish in a nonprofit society journal, like ASCB’s MBoC and LSE, your author fees benefit science by supporting ASCB’s programs.

Find out more at byscientistsforscience.org
Alternative Budget Proposals Create Uncertainty for NIH, NSF

The 2018 federal fiscal year began on October 1, 2017. Unfortunately, Congress has yet to approve a budget for FY18. As of March 2018, rumor had it that Congress had at least agreed on what the totals would be for the defense and domestic portions of the budget, but there were no indications that it had made any progress beyond that. In the absence of a final budget, the federal government has been funded through a series of continuing resolutions that provide funding for agencies based on the previous year’s budget.

Part of the delay is because it was necessary for Congress to deal first with the huge tax bill, which passed in early December of last year. The budget had to wait until the exact “cost” of the tax bill, the reduction in revenue into the government, was determined.

Other hurdles include a series of policy riders that must be negotiated. Two of the riders focus on the National Institutes of Health (NIH) budget. The budget passed by the House of Representatives for the NIH includes a prohibition on NIH-funded research that uses fetal tissue from induced abortions. In an effort to blunt the outright ban on science in the House bill, the Senate Appropriations Committee approved language that directs the NIH Director to examine the scientific merit of creating a bank of donated fetal tissue. It also directed the NIH to examine the value of using induced pluripotent stem cells as alternatives to embryonic cells. It isn’t clear how these differences will be resolved.

Meanwhile, the FY19 Trump administration budget was released in early February. In that proposal, the overall budget for the NIH is increased by $699 million more than the current continuing resolution funding level and $538 million more than the final FY17 NIH budget.

However, the increase is largely due to a plan by the Trump administration to create three new Institutes: the National Institute for Research on Safety and Quality, the National Institute for Occupational Safety and Health, and the National Institute on Disability, Independent Living, and Rehabilitation Research. Combined, those three Institutes add $730 million to the NIH budget.

If you crunch a few numbers, you will see that the FY19 NIH budget, without the three new Institutes, is actually $192 million less than the FY17 budget. Compared with the huge cuts to science agencies proposed by the Trump administration in the last two years, $192 million is a small amount. The budget for the National Institute of General Medical Sciences would be...
$73 million less than in FY17, and that for the National Cancer Institute would be $34 million below its FY17 budget. The National Institute of Allergy and Infectious Diseases would see a stunning $144 million decrease in its budget. Some existing Institutes would receive increases under the Trump budget, mostly because of increased funding to combat the opioid crisis gripping the nation.

Unlike the first Trump budget, which failed to even include the NSF, the FY19 budget asks Congress to fund the NSF at the same amount as in FY17.

The good news is that there are strong supporters for science in Congress who won’t pay much attention to the Trump administration’s budget ideas. ■

—Kevin M. Wilson

Congressional Biomedical Research Caucus Presentations
2018 Briefing Series

All presentations are from 12:00–1:00 pm in Room 2043 of the Rayburn House Office Building and are open to the public.

April 11 What Role Does Science Have in Solving the Opioid Crisis?
Peter W. Kalivas, Medical University of South Carolina

May 9 Medical Marijuana: Is It the Medical Panacea Some Hope It to Be?
Kent Hutchison, University of Colorado, Boulder

June 20 Is a Universal Flu Vaccine Possible?
James Crowe, Vanderbilt Vaccine Center

July 11 Water Bears: What They Are Revealing about How Life Can Survive in Some Remarkably Extreme Conditions
Bob Goldstein, University of North Carolina

Sept. 14 Our Own Worst Enemies: How Humans Host Dangerous Pathogens
Nevan J. Krogan, University of California, San Francisco, School of Medicine

Oct. 5 A Revolutionary Look at Evolution
Neil Shubin, University of Chicago

ASCB Member Benefit: Publicize Your Book

Are you publishing a book? If so, let ASCB know! Send the title, publisher, ISBN information, and a thumbnail (300 dpi) of the cover. We’ll include it in the ASCB Newsletter. This publicity is available only to ASCB members. Please send submissions to Thea Clarke at tclarke@ascb.org.
When discussing our recent experiments, I often hear fellow grad students say, “It didn’t work.” But, in fact, the experiment may have worked; it just didn’t yield the needed or expected result. In other words, it produced a negative result.

Why do we immediately correlate negative results with failure? It seems to be almost an instinct for grad students. Is it because of the pressure to publish, a process that is notorious for not accepting negative results? Or is it because we are incapable of accepting that our ideas were wrong? Is it that we feel we have used valuable time only to find something of no significance? Additionally, we feel the pressure from our committees, which are unwilling to let us leave without results that make a large impact, results that are most certainly not negative.

It’s important that we, as a scientific community, begin to retrain ourselves and learn to love our negative data for several reasons.

Negative Data Drive Honest Science

In 2013, *The Economist* reported that the publication of negative results has been gradually decreasing over the years (http://econ.st/2DYJEEA), something that shouldn’t surprise you if you’ve ever published a paper. Why is this? It’s simple: Reviewers aren’t excited about our statistically insignificant results. They want to see those asterisks. The same article pointed out that negative results are much more reliable. Taken together, this becomes the perfect storm. Imagine: you’re trying to publish a paper, but aren’t getting the results you need to wrap up the story. Maybe you have to adjust several things and keep retrying your experiment until you get the result you want. You blame your negative results on protocol error or unfavorable conditions once you get what you need. Maybe that’s true occasionally, but most often it isn’t, and in reality, you may be effectively falsifying data by being selective in what you publish. If we learn to embrace our negative data, we may be able to avoid this corruption in our methods.

Negative Data Are Still Informative

Many of us work long nights to explore the unexplored, or so we think. We also keep a trove of negative data in our desks that no one else knows about. Do you see the connection here? Wouldn’t it be nice to know if someone else had the same crazy idea, but nothing came out of it? A vast amount of time and resources are being wasted because we are afraid to publish our negative results, sharing with the world what wasn’t the answer to our questions. If we were more willing to do so, we could save each other a lot of time and grant money.

Embracing Your Negative Data Is Therapeutic

As mentioned above, we tend to immediately assume our negative data was a failing on our part. We must have taken too much time at a crucial step or forgotten to add something to a buffer. But it’s reasonable to believe that our negative data are reproducible and we know what we’re doing at the bench. In fact, we should be proud of all our data, whether or not it supports our hypothesis, because it was reproducible, and that is something that takes a lot of training and discipline to be able to do. If we can overcome this instant reaction of negative data = I screwed up, then we may feel a little better about ourselves.

Negative Data Force Us to Think

As grad students, we tend to be jealous of those who seem never to experience negative
data and are able to publish quickly. While that sort of success is gratifying, it may not be the best thing for us. During our PhD education we are supposed to learn, to think, and to troubleshoot. If our hypotheses are always supported by our results, then we may never experience having to change directions and completely rethink a project. Struggling with negative data makes us stronger scientists.

In short, negative data are good for us and good for science. Science is all about communicating our results, but it shouldn’t be only about communicating results that support a hypothesis. My plea isn’t that we publish every piece of data we produce, but that we think more about incorporating our negative data into our publications so that others can benefit from our work.

What to Do With Your Negative Data

Start by discussing your negative data with your advisor. This may be a difficult conversation, but attempt to stand by your methods if you know you did the experiments well. It’s unlikely that you will be publishing these results by themselves. Discuss the possibility of adding them as supplemental data. Remind your professor that these data points took time and grant money to accumulate and the work should be considered in the publication process. In case you’re wondering, *PLOS ONE* and *BMC Research Notes* both accept reports of negative results. In addition, online publishers such as F1000Research and PeerJ provide places to publish your negative results standalone, if you choose to do so.

—Ashtyn Zinn, University of Toledo

[N]egative data are good for us and good for science.
Upcoming Early Career Meetings

M4: The Mid-Atlantic Mitosis and Meiosis Meeting
Baltimore, MD
April 2–3, 2018

MAPS (Montreal Area Phase Separation) Meeting
Montreal, Canada
May 22, 2018

MBI-IMB Joint Symposium on Mechanobiology of Health and Disease
Biopolis, Singapore
May 31, 2018

Rocky Mountain Membrane Trafficking Meeting
Aurora, CO
August 17, 2018

The Northeast Nuclear Envelope Meeting
New Haven, CT
September 14, 2018

Florida Translational Cell Biology
Gainesville, FL
September 21, 2018

ASCB is pleased to provide Early Career Meeting Grants to graduate students and postdocs to organize one-day meetings. Such meetings usually involve two or more institutions (within the United States or international), and topics can range from basic science to career development as long as there is clear relevance to the broadly defined field of cell biology.

The next deadline to apply for funds is June 14, 2018. Applicants must be or become members of the ASCB.

For more information visit www.ascb.org and click on “Meetings.”

Apply Now for Prestigious ASCB Awards

Self-nominations by ASCB members/applicants are permitted for all awards. Unless otherwise indicated, deadlines are May 15, 2018, and applications should be submitted via email to awards@ascb.org. More information is available at www.ascb.org/ascb-awards.

EARLY CAREER SCIENTISTS

Early Career Life Scientist Award
Who is eligible: An outstanding scientist who has served as an independent investigator for no more than seven years as of May 15. Winner receives: Plaque, $1,000, Minisymposium talk, meeting registration, economy airfare, up to four nights hotel, and up to four days per diem to attend the Annual Meeting. Apply online at https://my.ascb.org/initiatives/#/apply/134.

WICB Junior Award for Excellence in Research
Who is eligible: A woman in an early stage of her career (within seven years of appointment to an independent position at the nomination deadline). Winner receives: Plaque, $1,000, Minisymposium talk, meeting registration, economy airfare, up to four nights hotel, and up to four days per diem to attend the Annual Meeting.
MID-CAREER SCIENTISTS
WICB Mid-Career Award for Excellence in Research
Who is eligible: A woman at the mid-career level (7–15 years in an independent position at the nomination deadline). Winner receives: Plaque, $1,000, Minisymposium talk, meeting registration, economy airfare, and up to three nights hotel to attend the Annual Meeting.

ESTABLISHED SCIENTISTS
ASCB Fellows
Who is eligible: All Regular and Emeritius members may nominate two of their colleagues or self-nominate. Fellows must have been an ASCB member for at least 10 of the past 15 years and a scientist whose research has had a significant and sustained impact on the field of cell biology. Winners receive: Plaque and pin and acknowledgement before the Keynote at the Annual Meeting. Deadline: May 15; nominate online at https://my.ascb.org/initiatives/#/apply/140.

E.B. Wilson Medal
Who is eligible: An individual who has demonstrated significant and far-reaching contributions to cell biology over a lifetime in science. Winner receives: Gives the E.B. Wilson Lecture at the Annual Meeting and receives the E.B. Wilson Medal, meeting registration, economy airfare, up to four nights hotel, and up to four days per diem to attend the Annual Meeting.

Sandra K. Masur Senior Leadership Award
Who is eligible: A woman or man at a later career stage (generally full professor or equivalent) whose outstanding scientific achievements are coupled with a record of active leadership in mentoring both men and women in scientific careers. Winner receives: Plaque, $1,000, meeting registration, economy airfare, and up to three nights hotel to attend the Annual Meeting.

New! ASCB Prize for Excellence in Inclusivity
Who is eligible: A scientist with a strong track record in research or professional who serves a critical role in fostering cell biology research who has made an impact by encouraging a diverse workforce and creating an inclusive environment through mentoring, cultural change, outreach, or community service. The nominees do not have to be members of ASCB. Winner receives: $5,000 to further inclusion activities, video shown at Keynote, profile in Newsletter, and essay contribution to Molecular Biology of the Cell.

GRADUATE STUDENTS AND POSTDOCS
New! ASCB Porter Prizes for Research Excellence
Who is eligible: Graduate students and postdocs. Winners receive: $2000 for outstanding predoctoral research and $4,000 for outstanding postdoctoral research, plaque, dinner with the Porter lecturer, Minisymposium talk, and travel costs of up to $1,000 to attend the meeting. Deadline: July 15; apply online at https://my.ascb.org/initiatives/#/apply/135.

Merton Bernfield Memorial Award
Who is eligible: An outstanding graduate student or postdoctoral fellow (at the time of nomination) who has excelled in research. Winner receives: Plaque, $1,000, Minisymposium talk, meeting registration, economy airfare, up to four nights hotel, and up to four days per diem to attend the Annual Meeting. Deadline: July 15; apply online at https://my.ascb.org/initiatives/#/apply/135.

UNDERREPRESENTED MINORITIES
E.E. Just Lectureship
Who is eligible: An underrepresented minority scientist who has demonstrated outstanding scientific achievement. Winner receives: Gives the E.E. Just Lecture, plaque, medal, and up to $1,800 to attend the Annual Meeting.

EDUCATORS
Bruce Alberts Award for Excellence in Science Education
Who is eligible: An individual who has demonstrated innovative and sustained contributions to science education, with particular emphasis on the broad local, regional, and/or national impact of the nominee’s activities. Winner receives: Plaque, talk at the Annual Meeting, meeting registration, economy airfare, and up to three nights hotel to attend the meeting.

DISTINGUISHED INDIVIDUALS OUTSIDE ASCB
Public Service Award
Who is eligible: An individual who has demonstrated outstanding national leadership in support of biomedical research. Winner receives: Gives the Public Service Award Lecture at the Annual Meeting or remarks via video and receives a certificate. If the award is presented at the meeting, meeting registration, economy airfare, up to four nights hotel, and up to four days per diem are paid.
The Editorial Board of *Molecular Biology of the Cell* has highlighted the following articles from the January, February, and March 2018 issues. From among the many fine articles in the journal, the Board selects for these Highlights articles that are of broad interest and significantly advance knowledge or provide new concepts or approaches that extend our understanding.

Regulation of ATP utilization during metastatic cell migration by collagen architecture
Matthew R. Zanotelli, Zachary E. Goldblatt, Joseph P. Miller, Francois Bordeleau, Jiahe Li, Jacob A. VanderBurgh, Marsha C. Lampi, Michael R. King, and Cynthia A. Reinhardt-King
Mol. Biol. Cell 29 (1), 1–9

Translational control of a human CDKN1A mRNA splice variant regulates the fate of UVB-irradiated human keratinocytes
Ann E. Collier, Dan F. Spandau, and Ronald C. Wek
Mol. Biol. Cell 29 (1), 29–41

Tau can switch microtubule network organizations: from random networks to dynamic and stable bundles
Elea Prezel, Aureliane Elie, Julie Delaroche, Virginie Stoppin-Mellet, Christophe Bosc, Laurence Serre, Anne Fourest-Lieuwin, Annie Andrieux, Marylin Vantard, and Isabelle Arnal
Mol. Biol. Cell 29 (2), 154–165

Chromatin histone modifications and rigidity affect nuclear morphology independent of lamins
Andrew D. Stephens, Patrick Z. Liu, Edward J. Banigan, Luay M. Almassalha, Vadim Backman, Stephen A. Adam, Robert D. Goldman, and John F. Marko
Mol. Biol. Cell 29 (2), 220–233
Host cell perforation by listeriolysin O (LLO) activates a Ca2+-dependent cPKC/Rac1/Arp2/3 signaling pathway that promotes Listeria monocytogenes internalization independently of membrane resealing
Jonathan G. T. Lam, Stephen Vadia, Sarika Pathak-Sharma, Eric McLaughlin, Xiaoli Zhang, Joel Swanson, and Stephanie Seveau
Mol. Biol. Cell 29 (3), 270–284

The Na+ (K+)/H+ exchanger Nhx1 controls multivesicular body–vacuolar lysosome fusion
Mahmoud Abdul Karim and Christopher Leonard Brett
Mol. Biol. Cell 29 (3), 317–325

Egr-1 mediates leptin-induced PPARγ reduction and proliferation of pulmonary artery smooth muscle cells
Xinming Xie, Shaojun Li, Yanting Zhu, Lu Liu, Rui Ke, Jian Wang, Xin Yan, Lan Yang, Li Gao, Weijin Zang, and Manxiang Li

Fibronectin type III and intracellular domains of Toll-like receptor 4 interactor with leucine-rich repeats (Tril) are required for developmental signaling
Hyung-Seok Kim, Autumn McKnite, Yuanyuan Xie, and Jan L. Christian
Mol. Biol. Cell 29 (5), 523–531

Analysis of the thresholds for transcriptional activation by the yeast MAP kinases Fus3 and Kss1
Matthew J. Winters and Peter M. Pryciak
Mol. Biol. Cell 29 (5), 669–682

Control of septin filament flexibility and bundling by subunit composition and nucleotide interactions
Anum Khan, Jay Newby, and Amy S. Gladfelter
Mol. Biol. Cell 29 (6), 702–712

Interaction between the Caenorhabditis elegans centriolar protein SAS-5 and microtubules facilitates organelle assembly
Sarah Bianchi, Kacper B. Rogala, Nicola J. Dynes, Manuel Hilbert, Sebastian A. Leidel, Michel O. Steinmetz, Pierre Gόnczy, and Ioannis Vakonakis
Mol. Biol. Cell 29 (6), 722–735

Two subunits of the exocyst, Sec3p and Exo70p, can function exclusively on the plasma membrane
Dongmei Liu, Xia Li, David Shen, and Peter Novick
Mol. Biol. Cell 29 (6), 736–750

Differential equation methods for simulation of GFP kinetics in non–steady state experiments
Robert D. Phair
Mol. Biol. Cell 29 (6), 763–771
MEETINGS Calendar

A complete list of upcoming meetings can be found at www.ascb.org/global-meetings. The following meetings have been added since the last issue of the Newsletter.

April 11–15, 2018. Banff, AB
Membrane Proteins in Health and Disease

May 21–22, 2018. Valencia, Spain
2nd World Congress on Cell Science and Molecular Biology

June 3–6, 2018. Nassau, Bahamas
The Ubiquitin System: Function, Physiology and Its Role in Disease.
www.fusion-conferences.com/conference77.php.

June 9–12, 2018. Boston, MA
Nutrition 2018, Where the Best in Science & Health Meet
meeting.nutrition.org.

July 17–22, 2018. Washington, DC
2018 Ciliate Molecular Biology.

July 23–27, 2018. Lisbon, Portugal
11th European Conference on Mathematical and Theoretical Biology

ASCB Annual Meetings
December 8–12, 2018 San Diego, CA
December 7–11, 2019 Washington, DC
December 5–9, 2020 Philadelphia, PA
December 11–15, 2021 San Diego, CA

Managing Your Membership

Keep Your Profile up to Date.
Update your profile online to get information that is relevant to you. Or, if you move, update your email or phone number. Visit ascb.org/myprofile.

Need to recover login info? Visit ascb.org/recover

Add ASCB to Your Safe Sender List
Receive the ASCB resources, news, and information important to you. Ask your systems administrator to whitelist our domain “@ASCB.org”

Let us Know About Your Achievements
Did you get a postdoc? Win an award? Did you publish? Were you promoted? Are you now at another organization? Your colleagues at ASCB want to know... send news on your achievements to ascbinfo@ascb.org

We welcome your comments and suggestions at ascbinfo@ascb.org

Other ways to stay in touch:
Facebook ASCBiology
Twitter @ASCBIology
LinkedIn ASCB
In Memoriam: Uno Lindberg, 78, Pioneer in Cell Motility Research

Uno Lindberg, one of the pioneers of the cell motility field, died last summer at age 78.

As a PhD student at Karolinska Institutet, Uno isolated an inhibitor of deoxyribonuclease I (DNase I) from cell and tissue extracts, which he and colleagues later identified as a complex of actin and a small protein that was named profilin due to its presumed role in stabilizing non-filamentous or profilamentous actin in vivo. For several years he led the research performed by the cell motility group at Uppsala University—work that demonstrated the well-ordered submembranous actin arrangement at the front of migrating cells and showed that remodeling of the profilin:actin complex was intimately linked to the phosphatidylinositol receptor signaling pathway. In 1981, Uno Lindberg was appointed professor in cell biology at the Wenner-Gren Institute, Stockholm University, where he remained until his retirement in 2006, when he returned to the Karolinska Institutet for an emeritus position.

Despite the commitments that followed with his appointment, Uno continued to work on non-muscle actin and cell motility, tirelessly searching to understand the structure and dynamics of the underlying molecular machinery. A life-long collaboration with Clarence E. Schutt began when Schutt was at the Laboratory of Molecular Biology, Cambridge, UK, and continued after he became professor of chemistry at Princeton University. Their work led to the discovery of the so-called tight and open high-resolution structures of profilin:actin, and based on the organization of the crystallized complex they argued forcefully for the existence of an alternative actin filament structure referred to as the actin ribbon. Despite perhaps being their most important contribution, the presence of the actin ribbon variant of the filament in vivo still remains to be demonstrated.

Uno was a passionate teacher. He made massive efforts to improve teaching at the university and to disseminate the knowledge of cell biology and natural sciences to the general public, and he also had several commitments besides his role as professor. He was member of the Royal Swedish Academy of Sciences, where he became vice president (Preses) in the early 2000s; he was a member and actively working for the Swedish Folkuniversitetet; and he was one of the scientists who started the European Cytoskeletal Forum and contributed to the development of this organization as a board member for many years.

Those of us that had the privilege to know Uno remember him as a generous and humorous person. He was a true scientist and with his energy, passion, and joy of life, he was a great beacon for students, colleagues, and friends. He is survived by his wife, Ann Margret, their two daughters, and their grandchildren. Needless to say, he is greatly missed.

—Roger Karlsson, Stockholm University

A longer version of this article can be found on the ASCB Post at www.ascb.org/uno-lindberg.

Are You Getting ASCB Pathways?

You should be regularly receiving our monthly email update, ASCB Pathways—alerting you to the latest ASCB happenings and Annual Meeting updates. If you aren’t seeing the e-newsletter in your inbox, please check your spam filter and/or contact your system administrator to whitelist *ascb.org.
Member Gifts

The ASCB is grateful to the following donors whose contributions between February 1, 2017, and January 31, 2018, helped support Society activities.

GOLD ($1,000 and up)

<table>
<thead>
<tr>
<th>Donors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bruce Alberts</td>
</tr>
<tr>
<td>William Bement</td>
</tr>
<tr>
<td>Mina Bissell</td>
</tr>
<tr>
<td>Robert Coffey</td>
</tr>
<tr>
<td>Pietro De Camilli</td>
</tr>
<tr>
<td>David Drubin</td>
</tr>
<tr>
<td>Susan Dutrin</td>
</tr>
<tr>
<td>Joseph Gall</td>
</tr>
<tr>
<td>Susan Gerbi</td>
</tr>
<tr>
<td>Gary Gorbsky</td>
</tr>
<tr>
<td>Brigid Hogan</td>
</tr>
<tr>
<td>Douglas Kosland</td>
</tr>
<tr>
<td>Peter Lansdorp</td>
</tr>
<tr>
<td>Michael Leibowitz</td>
</tr>
<tr>
<td>Jodi Nunnari</td>
</tr>
<tr>
<td>Thoru Pederson</td>
</tr>
<tr>
<td>Thomas Pollard</td>
</tr>
<tr>
<td>Sandra Schmid</td>
</tr>
<tr>
<td>Michael Shelanski</td>
</tr>
<tr>
<td>Shirley Tilghman</td>
</tr>
<tr>
<td>Kenneth Yamada</td>
</tr>
</tbody>
</table>

SILVER ($500 to $999)

<table>
<thead>
<tr>
<th>Donors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diane Barber</td>
</tr>
<tr>
<td>Suzanne Barbour</td>
</tr>
<tr>
<td>Barbara Belmont</td>
</tr>
<tr>
<td>Henry Brown</td>
</tr>
<tr>
<td>Donald Brown</td>
</tr>
<tr>
<td>Keith Burridge</td>
</tr>
<tr>
<td>FThree Foundation</td>
</tr>
<tr>
<td>Richard Hynes</td>
</tr>
<tr>
<td>Renato Iozzo</td>
</tr>
<tr>
<td>Daniel Lew</td>
</tr>
<tr>
<td>Sandra Masur</td>
</tr>
<tr>
<td>Denise Montell</td>
</tr>
<tr>
<td>John Pringle</td>
</tr>
<tr>
<td>K. Schmeider-Sapiro</td>
</tr>
<tr>
<td>W. Sue Shafer</td>
</tr>
<tr>
<td>Mark Winey</td>
</tr>
<tr>
<td>MariaElena Zavala</td>
</tr>
</tbody>
</table>

BRONZE ($250 to $499)

<table>
<thead>
<tr>
<th>Donors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michael Berns</td>
</tr>
<tr>
<td>Alexander Bershadsky</td>
</tr>
<tr>
<td>Richard Blanton</td>
</tr>
<tr>
<td>Eric Brown</td>
</tr>
<tr>
<td>Nirupa Chaudhari</td>
</tr>
<tr>
<td>Lynn Cooley</td>
</tr>
<tr>
<td>Dean Dawson</td>
</tr>
<tr>
<td>Kathy Foltz</td>
</tr>
<tr>
<td>Takeshi Fujiiwara</td>
</tr>
<tr>
<td>Celia Garcia</td>
</tr>
<tr>
<td>Benjamin Glick</td>
</tr>
<tr>
<td>Gregg Gundersen</td>
</tr>
<tr>
<td>Rebecca Heald</td>
</tr>
<tr>
<td>Geri Kreitzer</td>
</tr>
<tr>
<td>Lee Ligon</td>
</tr>
<tr>
<td>Laura Lowery</td>
</tr>
<tr>
<td>Frederick Maxfield</td>
</tr>
<tr>
<td>Philip McQueen</td>
</tr>
<tr>
<td>Susan & Claude Millman</td>
</tr>
<tr>
<td>Lou Novick</td>
</tr>
<tr>
<td>Jean Schwarzbauer</td>
</tr>
<tr>
<td>Anne Spang</td>
</tr>
<tr>
<td>Deborah Sweet</td>
</tr>
<tr>
<td>Claire Walczak</td>
</tr>
</tbody>
</table>

SUSTAINER (up to $249)

<table>
<thead>
<tr>
<th>Donors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Khadar Abdi</td>
</tr>
<tr>
<td>Stephan Abramson</td>
</tr>
<tr>
<td>Dany Adams</td>
</tr>
<tr>
<td>Alexandra Ainsztein</td>
</tr>
<tr>
<td>Derek Applewhite</td>
</tr>
<tr>
<td>Simon Atkinson</td>
</tr>
<tr>
<td>Siavash Azari</td>
</tr>
<tr>
<td>Sadie Aznavoorian-Cheshire</td>
</tr>
<tr>
<td>Lance Barton</td>
</tr>
<tr>
<td>Christopher Bazinet</td>
</tr>
<tr>
<td>Nicolas Biais</td>
</tr>
<tr>
<td>Sue Biggins</td>
</tr>
<tr>
<td>Rebecca Boston</td>
</tr>
<tr>
<td>Shyretha Brown</td>
</tr>
<tr>
<td>Andrew Campbell</td>
</tr>
<tr>
<td>Maya Capelson</td>
</tr>
<tr>
<td>J. David Castle</td>
</tr>
<tr>
<td>Katayoun Chamany</td>
</tr>
<tr>
<td>Chandrima Chatterjee</td>
</tr>
<tr>
<td>Seemay Chou</td>
</tr>
<tr>
<td>Chen Chun-Ti</td>
</tr>
<tr>
<td>Laura Cisar</td>
</tr>
<tr>
<td>Mary Clutter</td>
</tr>
<tr>
<td>Nathan Collie</td>
</tr>
<tr>
<td>Bruno Da Rocha-Azevedo</td>
</tr>
<tr>
<td>Gaudenz Danuser</td>
</tr>
<tr>
<td>Siddhartha Das</td>
</tr>
<tr>
<td>Margaret De Cuevas</td>
</tr>
<tr>
<td>Roberto Díaz</td>
</tr>
<tr>
<td>Margaret Dietrich</td>
</tr>
<tr>
<td>Erin Dolan</td>
</tr>
<tr>
<td>Robert Dotson</td>
</tr>
<tr>
<td>Mara Duncan</td>
</tr>
<tr>
<td>Mikala Egeblad</td>
</tr>
<tr>
<td>Jeanne Elia</td>
</tr>
<tr>
<td>Joanne Engel</td>
</tr>
<tr>
<td>Sofia Espinoza</td>
</tr>
<tr>
<td>Miles Esquerre</td>
</tr>
<tr>
<td>Qiang Feng</td>
</tr>
<tr>
<td>Joyce Fernandez</td>
</tr>
<tr>
<td>Cortney Gensemer</td>
</tr>
<tr>
<td>Michael Gleason</td>
</tr>
<tr>
<td>Michael Glorzer</td>
</tr>
<tr>
<td>Kavitha Godugu</td>
</tr>
<tr>
<td>Leslie Gold</td>
</tr>
<tr>
<td>Mary Goldring</td>
</tr>
<tr>
<td>Todd Green</td>
</tr>
<tr>
<td>Ekaterina Grischuk</td>
</tr>
<tr>
<td>Suna Gulay French</td>
</tr>
<tr>
<td>Karmella Haynes</td>
</tr>
<tr>
<td>Ellen Heber-Katz</td>
</tr>
<tr>
<td>Jessica Henty-Ridilla</td>
</tr>
<tr>
<td>Maryanne Herzig</td>
</tr>
<tr>
<td>Henry Higgs</td>
</tr>
<tr>
<td>Sarah Hitchcock-DeGregori</td>
</tr>
<tr>
<td>Walter Hittelman</td>
</tr>
<tr>
<td>Anne Houdusse</td>
</tr>
<tr>
<td>William Iliff</td>
</tr>
<tr>
<td>Jacqueline Jordan</td>
</tr>
<tr>
<td>Susan Kasper</td>
</tr>
<tr>
<td>Kaoru Karoh</td>
</tr>
<tr>
<td>Karen Katula</td>
</tr>
<tr>
<td>James Keen</td>
</tr>
<tr>
<td>Daniel Kelpsch</td>
</tr>
<tr>
<td>Katsuhiro Kita</td>
</tr>
<tr>
<td>Mark Kittirosipikul</td>
</tr>
<tr>
<td>James Konopka</td>
</tr>
<tr>
<td>Dana-Lynn Koomoa-Lange</td>
</tr>
<tr>
<td>Sanjay Kumar</td>
</tr>
<tr>
<td>Laura Lackner</td>
</tr>
<tr>
<td>Joshua Lawrimore</td>
</tr>
<tr>
<td>William Leach</td>
</tr>
<tr>
<td>David Leaf</td>
</tr>
<tr>
<td>Connie Lee</td>
</tr>
<tr>
<td>James Lee</td>
</tr>
<tr>
<td>Sophie Lelievre</td>
</tr>
<tr>
<td>Sandra Lemmon</td>
</tr>
<tr>
<td>Wayne Lencero</td>
</tr>
<tr>
<td>Robert Lindner</td>
</tr>
<tr>
<td>Brittta Lokken</td>
</tr>
<tr>
<td>Harvard Lyman</td>
</tr>
<tr>
<td>Margaret Magendantz</td>
</tr>
<tr>
<td>Michael Marks</td>
</tr>
<tr>
<td>Carol Mason</td>
</tr>
<tr>
<td>Pierre McCrea</td>
</tr>
<tr>
<td>J. McIntosh</td>
</tr>
<tr>
<td>Patrick McNeely</td>
</tr>
<tr>
<td>Wilfredo Mellado</td>
</tr>
<tr>
<td>John Merriam</td>
</tr>
<tr>
<td>Sonni-Al Miller</td>
</tr>
<tr>
<td>Yuko Mimori-Kiyosue</td>
</tr>
<tr>
<td>Jenifer Monks</td>
</tr>
<tr>
<td>Veronica Morandi</td>
</tr>
<tr>
<td>Da Silva</td>
</tr>
<tr>
<td>Paola Moreno-Roman</td>
</tr>
<tr>
<td>Mary Munson</td>
</tr>
</tbody>
</table>
Lee Ligon, associate professor of biological sciences at Rensselaer Polytechnic Institute, has been appointed associate dean for academic affairs in the School of Science at Rensselaer. Ligon has been a member of ASCB since 1994 and is chair of ASCB’s Public Information Committee. She studies the cytoskeleton and how it is organized to generate and maintain the complex 3D shape of differentiated cells. Ligon also studies the tumor microenvironment.

ASCB Member Benefit: One-on-One CV Review

Need some help with a cover letter, CV, resume, statement of teaching philosophy, or other document for the next step in your career? Members of the ASCB are willing to help. Just fill out a short form (www.ascb.org), and we’ll put you in touch with a reviewer. Then the two of you can decide which digital collaboration tool to use (email, Google Docs, Skype, Wikispaces, etc.). You must be a current ASCB member to take advantage of this service.

—Thea Clarke

ASCB Member Benefit: Publicize Your Book

Are you publishing a book? If so, let ASCB know! Send the title, publisher, ISBN information, and a thumbnail (300 dpi) of the cover. We’ll include it in the ASCB Newsletter. This publicity is available only to ASCB members. Please send submissions to Thea Clarke at tclarke@ascb.org.
Tone Deaf?

Dear Labby,
As a first-year woman medical student, I have appreciated my medical school’s efforts to mitigate unconscious bias. However, today in my pathology lab I had an experience that made me feel belittled and uncomfortable.

One of my lab’s preceptors, Dr. XY, an older faculty member, had come to my group’s table to help us through the lab. He posed a question to the table, which I answered. When he did not acknowledge my answer, I repeated myself. Again, he did not acknowledge me. Eventually, one of my male peers answered the question with the same answer that I had provided, and Dr. XY commended him for the correct answer.

I realize this is a minor incident, but I found it unacceptable. I expect my professors, especially very senior faculty members like Dr. XY, to foster an open learning environment. Incidents like this can make a learning community feel unwelcoming.

I welcome your advice about what, if anything, I should do.

—Belittled

Dear Belittled,
You are fortunate to be attending a medical school where the climate is one of mutual respect and where programs are in place to mitigate unconscious bias.

Your issues seem to be both getting credit for the right answer and concern that this professor’s behavior is at odds with the school’s welcoming climate.

Based upon Labby’s experience, some senior male faculty members welcome medical student diversity, including the fact that women are now 50% of the class, but some still live in the “good old days” when women were a small fraction of the class.

You need to consider possible causes of Dr. XY’s behavior and possible ways to address them that are consistent with mutual respect principles.

You could bring this incident to your Title IX coordinator, who is responsible for gender equity in education in an institution that receives federal funds. The coordinator can help you decide whether this rises to the level of denial of equal education. Your concern could be directed to the dean for medical education, who has experience in dealing with these sorts of challenges. It’s possible a different professor could be assigned to your lab group, and then a conversation could be had with Dr. XY at the end of the course about his behavior.

Labby also suggests another possibility. Since you describe Dr. XY as “senior,” he may be losing hearing with age. Because the ability to hear the upper registers—where your voice most likely resides—is lost first, perhaps it’s simply that he could hear the male student’s answer but not yours. When you next encounter Dr. XY, look for a hearing aid and be alert for other incidents suggesting impaired hearing, rather than bias.

Your sensitivity to being heard is important for your student role and school climate. Labby urges you to carry this sensitivity with you throughout the coming years as you move into your role as a physician.

—Labby

ASCB Member Comments
We welcome your comments and suggestions at ascbinfo@ascb.org.
Invest in the Future of Science

In 2017 your generous, tax-deductible donations helped provide the following awards:

• Postdoctoral Travel Awards
• Graduate Student Travel Awards
• Junior Faculty Travel Awards
• Minority Travel Awards
• International Travel Awards

In addition, your contributions provided support to the Early Career Scientist Award, the Merton Bernfield Memorial Award, the WICB Awards presentation, the Keith Porter Lecture, international outreach, ASCB’s public policy and public information efforts, and the LSE Fund.

We would like to thank you for supporting ASCB. Your support is vital to allow ASCB to continue to provide valuable resources to scientists.

Interested in donating to ASCB? Visit ascb.org/donate

MAXIMIZE YOUR REACH

Get seen by top scientists in biomedical research and cell biology by advertising with ASCB.

Reach your customers by advertising in the widely read print ASCB Newsletter, on our online news hub The ASCB Post, and in our highly acclaimed online journals, MBoC and LSE.

Inquire at ascbexhibits@spargoinc.com or call 703-631-6200 for more information.

Ask us about advertising opportunities at the 2018 ASCB | EMBO Meeting!
Call for Papers

Special Issue: Cell Biology of Stem Cells

Issue Editors: Yukiko Yamashita, Diane Barber, Terry Lechler, Jason Spence, David Traver

Submit manuscripts at mbcpapers.org

Deadline: May 15