ASCN Receives Presidential Award

The ASCB received the 2004 Presidential Award for Excellence in Science, Mathematics and Engineering Mentoring, one of five organizations to receive the honor, in addition to nine individuals. The citation noted the ASCB’s outstanding work advancing the careers of underrepresented minorities and of women, and its leadership in national science policy.

Wood Appointed CBE Editor-in-Chief

William Wood of the University of Colorado and recipient of the 2004 ASCB Bruce Alberts Award for Distinguished Contributions to Science Education has been appointed Editor-in-Chief of Cell Biology Education: A Journal of Life Science Education effective August 1. Wood succeeds co-editors Sarah Elgin and Malcolm Campbell.
Mentoring the Mentors

One of the most frequent requests that emerges from the ASCB membership, whether through events of the Women in Cell Biology Committee, the Minorities Affairs Committee, or the Postdoctoral Education Subcommittee, is for more mentoring for career planning and advancement. Why is there such a groundswell of need for mentoring?

All of us need mentors for every stage of our career—from choosing college and graduate school to senior scientists considering administrative opportunities. A mentor can help guide your career by helping you develop goals and the skills necessary to reach them. Mentors can help you network, assess your strengths and weaknesses, coach you, build your confidence and provide a voice of experience. However, it is important to recognize that you must not depend only on the mentor, but must take responsibility for your own career.

Successful scientists are successful at networking. Throughout their careers, they seek out colleagues, collaborators and communities like the American Society for Cell Biology. As protégés, they benefit enormously from the help that the community provides. As sounding boards and critics, these colleagues become invaluable contributors to career development. Protégés should choose their mentors, not just wait until a mentor chooses them.

Unfortunately, we do not all benefit from the ideal, evolving set of mentors that we might need to make our training, transitions and career progress seamless. This is not because the current generation of cell biologists is so uncaring, nor because the potential mentors are needy, nor because the potential mentors are unwilling. It is because too few of us have taken the initiative to be trained as mentors.

You need to advocate formal, interactive coursework run by expert faculty from business schools as an essential part of training for science graduate students, post-doctoral fellows and faculty.1

What can you do if you do not have access to a mentor? Absent a mentor (or a good one), you must become your own. A good mentor is anyone you can learn from, including yourself.

The first step is to learn survival skills that can help you overcome some of the hurdles of your career and life. You need take charge of your own career by developing the skills you need to get ahead. First and foremost, evaluate your strengths and weaknesses, and learn from your experiences. As a mentor you must be willing to invest time in yourself and others. With some additional expert training and mentoring resources,2 you can become a good mentor.

The next step is to chart the future. You must define where you need to be in one or two or five years. Once you have identified the goal, work backwards to plan how to achieve it.

For success you must focus. You must develop problem-solving skills. Both independent thinking and learning to work collaboratively are necessary for success.

You need to learn the rules that govern your career, including publication, teaching, staying current in the literature, and performing community service. You must also ferret out the unwritten rules, by asking questions when situations lack transparency.
Finally, as a mentor you must respect yourself, so that others will respect you. Your self-image colors your interactions with others. Self-promotion must be balanced by modesty. Both are necessary, but a surfeit of either can be a liability.

Your self-image colors your interactions with others. Self-promotion must be balanced by modesty. Both are necessary, but a surfeit of either can be a liability.

An admirable and achievable goal is to develop a mentoring network so that all scientists involved can achieve their potential. In the meantime, the ASCB and its committees strive to provide activities, resources and venues to help train mentors.

References
1. See for example http://www.survival.pitt.edu/events/trainer.asp.
2. Mentoring resources:
 - http://ascb.org/committees/mac/career.htm
 - http://www.serve.com/avis/mentoring.html
 - http://www.mentornet.net/
 - http://www.mentoring.org
 - http://www.mentoringgroup.com
 - http://www.mentoring.ca
 - http://www.mentoring.group.com
 - http://www.mentoring.ca
 - http://www.mentoring.ca

Comments are welcome and should be sent to president@ascb.org.

2005 Program Committee

- Linda Hicke (Chair)
- Helen M. Blau
- Brian Burke
- Judith Campisi
- Harold P. Erickson
- Frank B. Gertler
- Yukiko Goda
- Kathleen J. Green
- Douglas A. Lauffenburger
- Sean Morrison
- Jodi Nunnari
- Anne J. Ridley
- Sandra Schmid
- Zena Werb

New This Year—Post-doc Travel Awards

In addition to its predoctoral student travel awards, the ASCB Education Committee is now offering post-doctoral travel awards to the ASCB Annual Meeting. Post-docs at any stage of training and from any country are eligible. The award may be applied only to approved transportation expenses, up to $300. Recipients will be selected for the scientific merit of their abstract, stage of professional development, and financial need. Deadline is July 28; see http://www.ascb.org/committees/edcom/index.html.
The ASCB 45th Annual Meeting
December 10-14, 2005, San Francisco

Zena Werb, President ■ Linda Hicke, Program Chair ■ Aaron Straight, Local Arrangements Chair

MINISYMPOSIA

Building Sensory Networks
Hervig Bäuer, University of California, San Francisco
Gero Miesenboeck, Yale University School of Medicine

Cargo Sorting & Vesicular Transport
Robert Piper, University of Iowa
Anne Spong, Max Planck Institute, Tübingen

Cell Biology of the Synapses
David Colman, McGill University
Janet Richmond, University of Illinois

Cell Migration/Motility
Peter Friedl, University of Würzburg
Carole Parent, National Cancer Institute/NIH

Chromatin Dynamics
Terun Iwakoshi-Shigematsu, Lawrence Berkeley National Laboratory
Danesh Moazed, Harvard Medical School

Coordinating Adhesion & Signaling
Arri Ben-Ze'ev, Weizmann Institute of Science
Vanja Brogle, Imperial College London

Coordination of Cytoskeletal Networks
William Bement, University of Wisconsin, Madison
Talha Vatta, Weizmann Institute of Science

Cytoskeletal Dynamics in Living Cells
Wélia Fowler, The Scripps Research Institute
Steven Gruw, University of California, Irvine

Cytoskeletal Molecular Motors
Susan Gilbert, University of Pittsburgh
Margaret A. Tinius, University of Minnesota

Differentiation & Cancer
John Cleveland, St. Jude Children's Research Hospital
Xi He, Children's Hospital, Boston

Epithelial Morphogenesis & Polarity
David Bider, University of California, Berkeley
Heike Fülsch, Northwestern University

Extracellular Matrix & Signaling
Josephine Adams, The Cleveland Clinic Foundation
Joanne Murphy-Ullrich, University of Alabama at Birmingham

Formins & Arp2/3: Regulators of Actin
Henry Higgs, Dartmouth Medical School
Matthew Welch, University of California, Berkeley

Intermediate Filaments
Ueli Aebi, University of Basel
Bhui Omary, Palo Alto VA/Stanford University

Intersection of Signaling & Trafficking: Small GTPases
Jim Cauntous, University of Virginia
Harry Meller, University of Bristol

Lipid-Mediated Signals
Antonella DeMantei, Comorziato Mario Negri Sud
Julie Sebro, Children's Hospital/Oakland Research Institute

The Membrane Cytoskeleton
Vann Bennett, Duke University Medical Center/HHMI
Elizabeth McNally, University of Chicago

Mitosis & Meiosis
Dean Dawson, Tufts University
William Earnshaw, University of Edinburgh

Neuronal Polarity & Axo-Dendritic Growth
Lorenz Latimer, University of Minnesota
Luguo Luo, Stanford University

Nuclear Compartments
Joseph Gall, The Carnegie Institution of Washington
Angus Lamond, University of Dundee

Nuclear Envelope Functions
Valérie Doye, Institut Curie, Paris
Howard Wieman, Columbia University College of Physicians & Surgeons

Organelle Dynamics
David Chen, California Institute of Technology
Andreas Meyer, University of Lusanne

Pathogens Co-opting Host Cell Functions
Marcia Goldberg, Massachusetts General Hospital
Michael Way, Cancer Research UK

Protein Folding & Quality Control
Judith Frydman, Stanford University
Jonathan Weissman, University of California, San Francisco/HHMI

Protein Misfolding & Disease
William Balch, The Scripps Research Institute
Harry Orr, University of Minnesota

Regulating Intercellular Junctions
Andrew Kowalczyk, Emory University School of Medicine
Yoshimi Takai, Osaka University

RNA Silencing Mechanisms
Bennie Bartel, Rice University
Greg Hannon, Cold Spring Harbor Laboratory

Signaling in the Immune System
Jason Ouster, University of California, San Francisco/HHMI
Michael Dustin, New York University School of Medicine

Signaling in 3D Environments
Jeffrey Hubbard, Swiss Federal Institute of Technology
Senthil Muthuswamy, Cold Spring Harbor Laboratory

Stem Cell Niches
David Scadden, Massachusetts General Hospital
Allan Spradling, Carnegie Institution of Washington/HHMI

Trafficking Proteins & Complexes
James Hurley, National Institute of Diabetes & Digestive & Kidney Diseases/NIH
Sean Munro, MRC Laboratory of Molecular Biology, Cambridge

For more information, contact the ASCB at 301-347 9300; ascbinfo@ascb.org or www.ascb.org

NEWSLETTER JUNE 2005
PicoQuant for Fluorescence

Visit our: 3rd Short Course on Principles & Applications of Time-resolved Fluorescence Spectroscopy

Course instructors / Guest lectures: Joe Laskowicz, Karol Gryczynski, Manfred Auer, Peter Czerney, Joerg Enderlein, Stefan Hell, Martin Hof and other excellent scientific teachers

Hands-on experimentation / Lab demonstration by: by market leading companies

Content: Basic principles and instrumentation of fluorescence spectroscopy, Influence of experimental parameters (quenching, anisotropy, solvent effects), Advanced applications of fluorescence spectroscopy in modern research, Lifetime imaging & high resolution microscopy, Only basic knowledge of spectroscopy required

More information: www.picoquant.com/trfcourse.htm
Date: October 31 - November 4, 2005, Berlin-Germany
Supported by the Center for Fluorescence Spectr. (CFS), Baltimore

Leading in Single Photon Counting Applications

Laser Fluorescence Microscopes

- Ultimate sensitivity
- FLIM - Upgrade kit for Laser Scanning Microscopes (LSM)
- Comprehensive analysis software: FRET, FLIM, FCS, MCS, BIFL
- Adaptable to your application

Fluorescence Lifetime Systems

- Picosecond time resolution
- Modular and flexible design
- Multiple options: cryostat, polarisers, NIR-detectors
- Data analysis software

PicoQuant GmbH
Tel/Fax +49 30 6392 6560/61
photonics@pq.fta-berlin.de
http://www.picoquant.com

Come and see us at:
Laser 2005 in Munich
Booth# B1.561
NIH Public Access Policy
What It Means to NIH-Funded Investigators

The National Institutes of Health's (NIH) Public Access Policy\(^1,2\), which became effective last month, could transform the way NIH-funded research advances scientific knowledge. It has generated a tremendous amount of interest in the general public, as well as in the scientific and publishing communities. It offers NIH-funded researchers an avenue to make their findings publicly available immediately after publication.

What does the policy say?
The policy requests and strongly encourages all NIH-funded investigators to make their peer-reviewed author final manuscripts available to other researchers and the public at the NIH National Library of Medicine's (NLM) PubMed Central (PMC)\(^3\) immediately after the final date of journal publication. Authors are given the option to release their manuscripts at a later time, up to 12 months after the official date of final publication. NIH expects that only in limited cases will authors deem it necessary to select the longest delay period.

NIH is requesting that authors submit publications resulting from 1) currently funded NIH research projects or 2) previously supported NIH research projects where manuscripts were accepted for publication on or after May 2, 2005. The policy applies to all research grant and career development award mechanisms, cooperative agreements, contracts, institutional and individual Ruth L. Kirschstein National Research Service Awards, as well as NIH intramural research studies. The policy applies to peer-reviewed, original research publications that have been supported in whole or in part with direct costs\(^4\) from NIH, but it does not apply to book chapters, editorials, reviews, or conference proceedings. Publications resulting from non-NIH-supported research projects should not be submitted.

How will authors submit their manuscripts?
As announced in the April 29, 2005, edition of the NIH Guide for Grants and Contracts,\(^5\) the NIH Manuscript Submission (NIHMS) system\(^6\) has been developed to facilitate the submission of authors’ final manuscripts to PMC. Manuscript files from NIH extramural and intramural Principal Investigators (PI) can be uploaded to the NIHMS system by the PI. Beginning July 6, 2005, designees such as administrative personnel, librarians, publishers, etc. will be able to upload files on behalf of both intramural and extramural PIs. In all cases, only PIs can approve the Submission Statement to complete the submission process. Detailed instructions for submitting manuscripts are in the Public Access Policy Authors’ Manual\(^7\) and at the NIHMS system Web site.\(^6\)

How will authors benefit from submitting their full text articles to PMC?
By submitting their peer-reviewed manuscripts, authors will enjoy several benefits of the policy: principal investigators and institutions can use the manuscript submission as an alternative means to fulfill the existing requirement to provide publications as part of progress reports. (Note that other annual Progress Report materials cannot be completed through the NIHMS system.\(^8\)) By adding their manuscripts to PMC, authors will benefit from the modern information technology tools already available in PMC (e.g., GenBank, Taxonomy, DNA, Protein Sequences, Protein Structures, etc.). These tools will help scientists explore information across scientific fields or within narrow topical areas. Lastly, authors will benefit from higher visibility of their research by having it publicly available on PMC.

FAQs\(^9\)
Is Submission Under the Public Access Policy Required? No, it is voluntary.
Does NIH’s Public Access Policy Affect Copyright? No, the NIH policy explicitly recognizes and upholds the principles of copyright. While individual copyright arrangements can take many forms, NIH encourages investigators to sign agreements that specifically allow the manuscript to be deposited with NIH for public posting on PubMed Central as soon as possible after journal publication. As an example, the kind of language that an author or institution might add to a copyright agreement includes the following:

Journal acknowledges that Author retains the right to provide a copy of the final manuscript to NIH upon acceptance for Journal publication or thereafter, for public archiving in PubMed Central as soon as possible after publication by Journal.

In summary, NIH’s Public Access Policy sets the stage for transforming the landscape in how new research findings can be integrated within the fabric of scientific understanding and advancement. Archiving research findings from across various fields of science that can be mined and linked could lead to new scientific disciplines, avenues of research, and innovations. Because these benefits cross professional as well as geographical boundaries, NIH is confident the policy can help advance science and lead to improved health for all.

—Norka Ruiz Bravo

The author is an ASCB member and the NIH Deputy Director for Extramural Research.

2. Fed. Regist. 70 (26), 6891-6900 (February 9, 2005)
9. For answers to other questions including those covering issues related to publishing and peer review, see http://www.nih.gov/about/publicaccess/.
Another Take on Tenure

Zena Werb’s recent President’s Column [April 2005 ASCB Newsletter] on the problems with tenure highlights the challenges to aging baby boomers, who are forming a bolus of senior academics that reduce available tenure slots at universities. She rightly points out that in the absence of mandatory retirement, it may be time to reconsider the need for maintaining tenure post-65 or indeed to consider the role of tenure at all.

But young scholars should not dismiss the importance of tenure. True tenure, granted as it was originally intended, can indeed foster independence and creativity, and if granted in a reasonable period (say, within six years), can overlap with the most productive and energetic period of a young faculty member’s career and importantly, can give them a voice.

However, the problem is that the academy is moving away from traditional tenure to something far more conservative. Cynical young faculty members see the reward of tenure ever receding, and the bar rising above the level most of their senior colleagues achieved. Some famous institutions trend towards granting tenure late (at the full professor level), often with multiple levels of tenure-like review along a 12-year journey, each of which is essentially a tenure-level decision. This constant “up or out” threat hangs a sword of Damocles over the junior faculty, generating a steady demand for safe, conservative approaches, the “right sort” of publications, and careful cultivation of the senior faculty. Junior scholars are effectively silenced. Late tenure entrenches the status quo.

Moreover, in an era where a beginning faculty position is often not achieved till the candidate is well into their 30s, late tenure means the candidate is juggling children in college and parents in nursing homes while still essentially a “probationary” faculty member. Even the first NIH grant now has a median age of over 40. With this prolonged uncertainty, no wonder men and women with families increasingly choose other careers. Academia’s advantages (coupled with its comparatively low salaries) are less appealing when you may be required to uproot your entire life at 50. This instability may contribute to the reduced numbers of women in the tenure pipeline, since women do not apply to academic positions in proportion to their representation in the postdoctorate.

Consider, then, a strategy in which tenure is determined within six years of a faculty position and will be replaced at age 65 with a reviewable, renewable contract. This would at once develop and protect the junior faculty, challenge and change the field, and open up the senior ranks. Existing mechanisms of post-tenure review could be used to ensure faculty continue contributing to the educational and research missions of their institutions.

—Susan Forsburg
University of Southern California

1 http://www.nap.edu/books/030909626X/html/
2 http://www.ascb.org/publications/competition.html
House Passes Stem Cell Legislation; President Plans Veto

A bill to expand Federal stem cell policy to allow Federally-funded researchers to use embryonic stem cell lines derived after August 9, 2001 passed the House of Representatives by a solid margin. The vote was the culmination of a two-year effort to build a bipartisan coalition in support of an expansion of the Federal embryonic stem cell research policy.

The bill, H.R. 810, sponsored by Reps. Michael Castle (R-DE) and Diana DeGette (D-CO), was approved by a vote of 238 to 194. 50 Republicans, including the chairs of seven House Committees, voted for the bill in spite of strong opposition by their party leadership, including a threat to veto the bill by the President, which would be the first veto of his presidency.

The overwhelming reception to H.R.810 is not just an indication of Congressional support for stem cell research. “Today’s vote on H.R. 810 was more than just a vote for stem cell research,” said Larry Goldstein, Chair of the ASCB’s Public Policy Committee. “It was a vote in support of science, and for the promise of publicly-funded biomedical research to achieve new insights into the mechanisms and treatment of terrible human disease.”

During House consideration of H.R.810, debate ranged from scientific explanations of the potential of embryonic and adult stem cells to stories of personal family illnesses to biblical references to attacks on the motivation of the research community.

During his remarks, House Majority Leader Tom Delay (R-TX) called the bill, “a vote to fund with taxpayer dollars the dismemberment of living, distinct human beings for the purposes of medical experimentation…The best that can be said about embryonic stem cell research is that it is scientific exploration into the potential benefits of killing human beings.”

Supporters of the legislation had a radically different viewpoint. Rep. James Langevin (D-RI), who was paralyzed by a gun accident as a 16-year-old, argued that, “Stem cell research gives us hope and a reason to believe. I believe one day a child with diabetes will no longer watch in agony as a loved one with Parkinson’s or Alzheimer’s gradually declines. And I believe one day I will walk again. There are few moments in medical history when we can clearly identify a giant step forward in improving countless lives. We saw it with the discovery of antibiotics and the advent of organ transplants. I believe that adult and embryonic stem cell research is another of these great moments.”

Members of The American Society for Cell Biology were actively involved in educating members of the House of Representatives about the scientific potential of stem cell research. Goldstein and others have held numerous scientific briefings for Members of Congress and their staffs in preparation for the vote.

Creationism Monitor

New York—Bill A8036 has been introduced in the New York General Assembly that would require that “all pupils in grades kindergarten through twelve in all public schools in the state shall receive instruction in both theories of intelligent design and evolution.”

Georgia—The 11th U.S. Circuit Court of Appeals has refused to overturn a lower court ruling that evolution disclaimers in the Cobb County School District’s science text books must be removed.

Texas—A bill introduced in the House of Representatives would require that the Texas state education code be free from factual errors— including “errors of commission or omission related to viewpoint discrimination or special advocacy on major issues, as determined by the State Board of Education.”

Alabama—Three bills introduced in the legislature to protect the rights of teachers to teach “scientific critiques of prevailing scientific theories” have died at the close of the 2005 session.

Source: The National Center for Science Education
Final Regulations Issued on “Select Agents”

The Centers for Disease Control and Prevention (CDC) recently issued regulations regarding the use of “select agents” and other toxins by universities and other research facilities.

Interim regulations were published in December, 2002 in partial response to the September 11, 2001 attacks and subsequent anthrax attacks around the United States.

The regulations outline security, handling, reporting and registration requirements for the possession, use or transfer of 42 agents considered to have the potential to serve as bioterrorism agents.

In general, the final regulations match the interim rules (see June 2005 ASCB Newsletter). However, important differences include the requirement that organizations using select agents test their biosafety and security plans on an annual basis. In response to concerns about the bureaucratic burden of the interim rules, the final rule streamlines reporting requirements by the development of a unified CDC/Agriculture Department web-based reporting system.

The rule also allows for a single certificate of registration for buildings at one physical location. Exemptions for products approved for use by other laws are expanded to include both approved and off-label uses.

For more information about the select agent regulations, see www.cdc.gov/sap.

Senators Oppose Bush DOE Science Funding

Sixty-eight Senators have signed a letter to the members of the Senate Appropriations Committee asking them to ignore the President’s FY06 budget proposal for the Department of Energy’s Office of Science. In his budget proposal, the President had proposed a 3.8% cut for the Office. Instead, the signers call on the Appropriations Committee to provide a 3.2% increase.

In fiscal year 2005, the President’s budget asked for $3.43 billion, a 2.6% increase. The final Congressionally-approved budget provided a $3.6 billion, almost 4%, increase. Almost half of the final funding was in Congressional earmarks.

Congressional Biomedical Research Caucuses

The Congressional Biomedical Research Caucus presented Matthew Meyerson of the Dana-Farber Cancer Institute who spoke about Tailoring the Treatment of Lung Cancer, David Hunter of Harvard Medical School, who spoke about Genetic Determinism & Disease, and Linda Acredolo who spoke on Talking Before Speech: Sign Language in Infants.
Better Images...Faster Answers

Whole Organism Macro Fluorescence

From the leader in 3-D optics comes the world's first Macroscopic Fluorescence zoom system for high-resolution, whole organism imaging, the NEW Leica MacroFluo™.

In the past, capturing quality images of entire adult model organisms like mice, rats, zebrafish or stickleback fish was difficult due to their size. With the MacroFluo™ this is no longer the case as this fluorescence imaging system is capable of capturing extra large fields. Add a Leica DFC digital camera and realize the system's true potential by capturing multiple large field-of-view images in a stack. These images are automatically rendered into an amazing composite photo where all planes, from top to bottom, are in focus at the same time (i.e. Image Stacking or MultiFocus).

Achieve Better Images...for Faster Answers with the Leica MacroFluo™! Call 800-248-0123 today for a free consultation!

Intelligent Automation

Leica Microsystems Inc.
2345 Wauegan Road
Bannockburn, IL 60015

Telephone (847) 405-0123 (800) 248-0123
Fax (847) 405-0164
In Canada call (800) 205-3422
www.stereomicroscopy.com

© 2005 Leica Microsystems Inc., BNA494

NEW!
Blackburn, Heald To Receive WICB Awards

Elizabeth Blackburn of the University of California, San Francisco, and Rebecca Heald of the University of California, Berkeley, were named by the ASCB’s Women in Cell Biology Committee to receive the 2005 WICB awards.

Blackburn will receive the Senior Award for her leadership in the telomere biology field, in addition to her contributions as an exceptional mentor and scientist.

Heald will receive the Junior Award for her outstanding research, teaching and service to the scientific community. Her RanGTP gradient study substantiated how microtubule assembly around chromatin works.

Silverstein Selected for Alberts Award

The ASCB Education Committee has selected Samuel Silverstein of Columbia University College of Physicians & Surgeons to receive the 8th Annual ASCB Bruce Alberts Award for Excellence in Science Education.

Silverstein will receive the Award in recognition of his innovative and effective Summer Research Program for High School Science Teachers in New York, which he founded and directs.

ASCB 2005 Call for Nominations

Merton Bernfield Memorial Award

Who is Eligible: An outstanding graduate student or postdoctoral fellow who has excelled in research.

How to Apply: The student or post-doc or their advisor should submit a one-page research statement, a list of publications, a copy of the abstract submitted to the current year’s Annual Meeting, and the advisor’s letter of recommendation. Post-docs may also submit the recommendation of their graduate student advisor. Duplicate applications from graduate students may be submitted for the Gilula and Bernfield Memorial Awards.

Awards: The winner speaks in a Minisymposium at the 45th ASCB Annual Meeting and receives an honorarium and a plaque. Expenses to attend the Annual Meeting are paid.

Deadline: August 1.

Norton B. Gilula Memorial Award

Who is Eligible: An outstanding graduate or undergraduate student who has excelled in research.

How to Apply: The student or advisor should submit a one-page research statement, a list of publications, if any, the abstract submitted to the current year’s Annual Meeting and the advisor’s letter of recommendation. Duplicate applications from graduate students may be submitted for the Gilula and Bernfield Memorial Awards.

Awards: The winner is presented a plaque. Expenses to attend the Annual Meeting are paid.

Deadline: August 1.

Nogales Recognized with Early Career Award

Eva Nogales of the University of California, Berkeley will receive the ASCB Early Career Life Scientist Award. Nogales’ research is on novel methods of single particle image reconstruction and analysis to reveal the structure of these assemblies, their interactions with ligands and the regulation of their structure and function.

Werner-Washburne Named E.E. Just Lecturer

The ASCB Minorities Affairs Committee has named Margaret Werner-Washburne of the University of New Mexico to present the 12th annual E.E. Just Lecture.

Werner-Washburne’s talk will be on “The Quiescent State in Yeast,” to be presented on Sunday, December 11 at the ASCB Annual Meeting in San Francisco.

ASCB NEWSLETTER JUNE 2005
When Smart Becomes Simple

Brilliant Imaging at Your Fingertips

The new Leica DMI 6000 B Inverted Digital Research Microscope is designed to form the nexus of complex live cell experiments.

- Attach multiple light sources and detectors with unparalleled flexibility.
- Rapidly flip between excitation wavelengths with fast internal filter wheel.
- Perform complex experiments under full-motorized control.
- Benefit from excellent stability and full environmental control for time lapse measurements.

Every image is perfectly adjusted using Leica Microsystems' Intelligent Automation. Imagine being able to instantly switch contrast techniques and simultaneously restore your optimized settings by simply touching a button. Dramatically improve your live cell imaging! Call Leica today at 800-248-0123.

Intelligent Automation

Leica Microsystems Inc.
2345 Waukegan Road
Bannockburn, IL 60015

Telephone (847) 405-0123 (800) 248-0123
Fax (847) 405-0164
In Canada call (800) 205-3422
www.simply-microscopy.com

© 2004 Leica Microsystems Inc., BNA/472
When Vladimir Gelfand moved to the U.S. in 1991, he “cast his fate to the wind,” says Rick Horwitz, who gave him his first U.S. faculty position, at the University of Illinois, Champaign-Urbana, in 1993. Horwitz knew that there was a risk in hiring a senior scientist who’d set up his first lab in Moscow nearly 20 years before and now was starting over at the bottom of the academic ladder. Gelfand had never written an American grant application nor mentored an American graduate student. But on balance, Horwitz decided that the risk to the University of Illinois was nothing compared to Gelfand’s. “That’s the real story behind Volodya—his courage to leave a position in Russia to come to the States,” says Horwitz. Gelfand’s colleague Andy Belmont agrees: “when he came [to the University of Illinois], he didn’t have a lot of fancy techniques because he was working on a limited budget, but the experiments he described were so logical and so ‘to the throat of the problem.’”

Over the next 11 years, Gelfand got going American-style at Champaign-Urbana, learning the grants game, building a lab of devoted students, and becoming what Belmont remembers as the department’s “glue person”—his tireless committee volunteer and the resident experimental troubleshooter. Horwitz confirms: “Volodya is a very gregarious person—a one-man scientific hub. In his own lab, Gelfand developed an ingenious model system based on immortalized melanophores—pigment cells from the frog *Xenopus* that allowed Gelfand to use the movement of pigment organelles melanosomes—as an assay for regulation of molecular motors.

Last May, Gelfand left Urbana for Northwestern. Along with his *Xenopus* melanophore model, Gelfand started to use a second model system, cultured *Drosophila* cells. “With our frog and *Drosophila* systems, we’re trying to do the biology of motor proteins,” Gelfand says. “We study how motor proteins work in a living cell and specifically how multiple motors on the surface of an organelle are coordinated and regulated. A typical organelle has, at least, three types of molecular motors on its surface—a plus-end microtubule motor, a minus-end microtubule motor, and the myosin. The big unsolved question is how those three are coordinated so they know where to go and which one has to be active.

Vladimir (“Volodya”) Gelfand was born and raised in Moscow, the son of mathematicians. His father, I.M Gelfand, who, like his son, emigrated to the U.S. in the early 1990s to become a professor at Rutgers (the senior Gelfand also became a MacArthur Foundation Fellow), is widely considered one of the greatest mathematicians of the last century. Volodya Gelfand says that he studied mathematics as an undergraduate at Moscow State University because it was the family “default setting.” But he’d also followed the cell biology lectures and seminars of Jury Vasiliev and joined the Vasiliev lab as an undergraduate student and continued in 1970 as a graduate student. In Vasiliev’s lab he studied the emerging structural components
of the cytoskeleton, and especially the role of microtubules in establishing cell polarity. By 1974, having earned his doctorate, Gelfand set up his own lab at the Belozersky Institute of Bioorganic Chemistry (a research division of the Moscow State University) to work on the biochemistry of microtubules. There his lab was the first to demonstrate that kinesin (shortly before it was isolated by Ron Vale and his colleagues) is a microtubule-dependent ATPase. Then in 1985, Doug Murphy arrived at Moscow State on a Fulbright and helped Gelfand to establish a culture of melanophores from fish scale. It was a primary culture system then, beautiful but hideously time-intensive and limited experimentally. The potential of it galvanized Gelfand’s research.

Outside the lab, the Soviet Union was falling apart. By the late 1980s, intellectual isolation, ever-more limited resources, and his responsibility as PI to watch out for his lab members in perilous times was weighing on him. Gelfand wrote a letter to Marc Kirschner, whom he’d never met, to ask for a position at UCSF as a visiting scientist. In 1989, Gelfand arrived alone in San Francisco to spend four months in the Kirschner lab. “UCSF was a dream. I’d never been in the States before but it was not just the materials or equipment. The people there were absolutely terrific: Marc and Tim Mitchison and Andrew Murray. I came straight from Moscow into that unbelievable environment and it was probably the great educational experience of my life.”

The obstacles of starting over at his career stage in a new language, a new scientific system and without any employment beyond Kirschner’s offer to return as a guest researcher at UCSF were tremendous. While he was in California, Gelfand’s wife, Anna, remained in Moscow with the couple’s two children, Eli, who was 16, and Masha, who was 6. But in 1991, the four Gelfands set out for a new life in the U.S.

New World science was wonderful but America was a very strange place for the Gelfand family. “At UCSF, Peter Walter told me that it takes 12 years to adjust,” Gelfand recalls. “At first, I thought this was a bad joke. But I know now that he was perfectly correct.”

Eli is now a cardiology fellow at Beth Israel Hospital in Boston. Masha just graduated from Washington University in St. Louis and will start the Neuroscience Program at Harvard in the fall. Anna continues as a research associate in the new Northwestern lab. “I’ve probably adjusted as well as I ever will,” says Gelfand after 13 years in the U.S.

The Gelfand lab was a wonderful place to work, says Steve Rogers, who was Gelfand’s first graduate student at the University of Illinois in 1994 and his first American student to reach faculty status with his appointment this year at the University of North Carolina, Chapel Hill. “Volodya is one of the nicest guys imaginable,” says Rogers. “He’s extremely intelligent and knows a lot about all areas of cell biology, so if you have a question about anything, Volodya can usually answer it off the top of his head.”

His lab was the first to demonstrate that kinesin (shortly before it was isolated by Ron Vale and his colleagues) is a microtubule-dependent ATPase.

“UCSF was a dream. ... I came straight from Moscow into that unbelievable environment and it was probably the great educational experience of my life.”

DEEP DEFINITIVE GAS-EFFICIENT UNINTERRUPTIBLE SCALABLE AFFORDABLE HYPOXIA CELL CULTURE

For technical information please visit: www.biospherix.com/cbn6

Call 315-387-3414 or toll free 800-441-3414
Fission Yeast mto2p Regulates Microtubule Nucleation by the Centrosomin-related Protein Mto1p
Itaru Samejima, Paula C.C. Lourenco, Hilary A. Snaith, and Kenneth E. Sawin

mto2p, a Novel Fission Yeast Protein Required for Cytoplasmic Microtubule Organization and Anchoring of the Cytokinetic Actin Ring
Srínivas Venkatram, Jennifer L. Jennings, Andrew Link, and Kathleen L. Gould

Effects of γ-tubulin Complex Proteins on Microtubule Nucleation and Catastrophe in Fission Yeast
Sabina Zimmerman and Fred Chang

Microtubule organizing centers (MTOCs) function in nucleating microtubule (MT) arrays in eukaryotic cells and in anchoring the minus ends of MTs. There are at least 3 different MTOCs in the fission yeast, S. pombe: interphase MTOC (iMTOCs), the equatorial MTOC (eMTOC), and spindle pole bodies (SPBs). iMTOCs nucleate cytoplasmic MTs during interphase whose dynamic plus ends extend toward the cell periphery. SPBs nucleate the intranuclear mitotic spindle apparatus that drives chromosome segregation, as well as cytoplasmic astral microtubules that orient the spindle. Late in mitosis the eMTOC assembles at the site of cell division and nucleates the postanaphase array of MTs. The γ-tubulin complex (γ-TuC) consists of γ-tubulin and other highly conserved proteins. Several recent papers have identified proteins in fission yeast that help to target γ-TuC to different cytoplasmic locations.

Independently, the Sawin, Gould, and Chang labs identified mto1p (microtubule organizer 1, previously known as mbo1p or mod20p) as a nonessential protein that specifically regulates γ-TuC recruitment to MTOCs and eMTOCs, and enables nucleation of MTs from these sites. Although mto1Δ mutants lack functional cytoplasmic MTOCs, surprisingly they still retain some interphase cytoplasmic MTs. Zimmerman and Chang examined the origin and dynamics of cytoplasmic MTs in mto1Δ cells and showed that they are derived either from mitotic spindles that escape the nucleus during cell division or from intranuclear MTs that pierce the nuclear envelope to enter the cytoplasm during interphase. Paradoxically, the free cytoplasmic MTs in mto1Δ cells exhibited decreased rates of catastrophe (abrupt disassembly at their plus ends) and continued to grow and treadmill. Exactly how the predominantly minus-end localized γ-TuC and mto1p function to affect dynamics at the plus ends of MTs remains to be determined. Small motile particles of these proteins present along MTs and at their plus ends may be involved.

The differential effects of mto1p on cytoplasmic versus nuclear MTOCs suggested that other factors might specifically regulate γ-TuC function. Samejima et al., taking a genetic approach, and Venkatram et al., taking a biochemical approach, independently identified mto2p as a major regulator of mto1p, required for a subset of mto1p functions (see also Janson et al., J Cell Biol. (2005) 169: 297–308). Their findings estab for interaction with γ-TuC and for the recruitment of γ-TuC to iMTOCs and eMTOCs, but not to SPBs. Thus, unlike mto1Δ cells, mto2Δ cells still assemble cytoplasmic astral MTs from SPBs. As many of these components are conserved in higher eukaryotes, fission yeast appears to be an excell specific functions throughout the cell cycle.

Caspase-resistant Golgin-160 Disrupts Apoptosis Induced by Secretory Pathway Stress and Ligation of Death Receptors
Rebecca S. Maag, Marie Mancini, Antony Rosen, and Carolyn E. Machamer

The Golgi complex is a nexus for membrane trafficking along the biosynthetic and endocytic pathways, and several Golgi proteins are specifically cleaved during apoptosis. Here it is shown that expression of golgin-160(3DE), a caspase-resistant mutant, renders cells resistant to apoptosis induced by ER stress or by ligation of death receptors, but not by other pro-apoptotic treatments. Interestingly, expression of the mutant golgin-160(3DE) inhibited caspase activation and prevented cleavage of endogenous golgin-160, again specifically for ER stress and death receptor-induced apoptotic pathways. While a role for the Golgi in responding to ER stress may have been anticipated, these data suggest that the steady-state pool of death receptors in the Golgi may also be important for signaling. Together these observations suggest that the Golgi may function as a stress sensor and scaffold for important pro-apoptotic signaling events.
ANGIOGENESIS IN CANCER AND VASCULAR DISEASE
www.med.miami.edu/mnbws

February 4-8, 2006
Wyndham Miami Beach Resort Hotel

Awardees: Kari Alitalo, Peter Carmeliet, Judah Folkman, Rakesh Jain

Topics: Molecular Mechanisms of Angiogenesis, Stem Cells and Vascular Regeneration, Tumor Angiogenesis & Vascular Disease, Lymphangiogenesis, Angiogenesis Inhibition, Emerging Technologies, and Therapeutic Angiogenesis

- Poster Deadline November 4, 2005 (Short Oral Presentations in the program will be selected from posters)
- CME credit activity of the University of Miami
- Exhibition space available
- Details on website or write to sblack@miami.edu

Sponsored by the University of Miami and Nature Publishing Group
Organized by the University Biochemistry & Molecular Biology Foundation, Inc., The Sylvester Comprehensive Cancer Center and Nature Medicine, Nature Cell Biology and Nature Biotechnology
Online Communities

Only 20 years ago, the average biologist started to venture online for more than blast searches and email. Topic driven newsgroups were the first communities, from women in biology to yeast genetics to recipes to Star Trek movies. It wasn’t long before the Web arrived to offer a new user-friendly interface, and the rest, as they say, is history. The great promise of the internet is the ability to reach across continents to collect information and establish connections. The challenge is ensuring the accuracy of information, and achieving functional interactions amid the noise.

Finding the Information You Need

For a student or postdoc embarking on a new project, after the obligatory literature search on PubMed, it is worthwhile to search on Google or other engines. This will find many pages of information or lecture notes provided by generous fellow-scientists. For example, are you working on chromatin? Try The Chromatin Structure & Function Page. Maybe you are new to phosphorylation. You might investigate Kinew or Kinase.com. Perhaps you are venturing into fission yeast for the first time. All sorts of information can be found on Pombe.net.

The advantage to all this information is that it’s freely available, but how do you evaluate the completeness and accuracy of an internet resource? Part of Google’s algorithm is based on the number of links to a page, which provides a market-based valuation—if lots of people link to it, there is presumably a higher likelihood of accuracy. Affiliation with a university or reputable vendor site, and an identifiable individual or entity responsible for the information, is also an important indicator. But ultimately, it’s a buyer-beware system, not unlike the judgment required for non-reviewed data presented at a meeting.

All that information may be freely available, but it is still protected by copyright. If you would like to cite a page, or borrow an image, you should contact the webmaster of the site for permission.

Meeting People and Getting Advice

Now you have some background, but you would like more information about a method, or perhaps you need career guidance. How do you find your expert? Specialist sites often have lists of investigators carrying out research in their area; for example, the Saccharomyces Genome Database has a list of yeast colleagues. The people running the sites that you investigated above also may have relevant expertise.

Should you just email your question to someone who is listed? There is nothing wrong with that in principle, but if the answer is easily found in the literature, or from a colleague in the next lab, or even on the recipient’s website, it is likely to be annoying. So do your homework first, and make any question a thoughtful one. A mailing list is a way to ask a question of a large group of people, but since it is a widely distributed email, the same rules apply.

Less intrusive is a discussion forum. These are available on Bionet, or as individual forums such as those on the ASCB Community Forum or the Chronicle of Higher Education. Because discussion groups can be read at will, posting a message there is less intrusive than an email, but it relies on people with the knowledge you need actually reading the site and responding.
Everyone has an opinion

Recently, a new internet phenomenon is under-way: web logs, or blogs, which are on-line diaries, often with associated discussion forums. Although blogs cover all topics, they are slanted towards politics; comparatively few address science-specific issues, such as The Panda’s Thumb on evolution. ^11^ Blogs can be tempting places to engage in discussion and debate. They can also be dangerous time-sinks for a busy scientist.

Limiting Exposure

Once you put yourself online, particularly on discussion boards or web sites, you have created an internet persona, which has two negative considerations. First, the spammers’ robots will harvest your email address and drown your account in unsolicited advertisements. This can be thwarted in part by modifying your email address in your online posts, for example by spelling the @ sign as AT, or adding extra words like REMOVE in the address. Or, you might set up a free web-mail account for a “posting” address that won’t clog your professional account. The second issue is one of exposure. You are now a public figure. Consider, before you press the POST button on a potentially intemperate argument, whether you want your future employers to see it when they Google your name.

Finally, there is a tendency to consider the internet closer than is the colleague down the hall. While you should enjoy and benefit from your electronic connections, don’t neglect the real people in your work environment. They are the ones to comment on your papers, write your letters of recommendation, and share that morning cup of coffee.

—Susan Forsburg

While you should enjoy and benefit from your electronic connections, don’t neglect the real people in your work environment.

2 http://www.google.com
3 http://www.chromatin.us/chrom.html
4 http://bioinfo.itb.cnr.it/kinweb/
5 http://kinase.com/
6 http://www.pombe.net
7 http://www.yeastgenome.org/ComContents.shtml
8 http://www.bio.net/
9 http://www.ascb.org/forums/upload/index.php
10 http://chronicle.com/forums/
11 http://www.pandasthumb.org/

Career Advice for Life Scientists II

The ASCB Women in Cell Biology Committee has published two volumes of Career Advice for Life Scientists. Career Advice for Life Scientists II, a new compilation of selected WICB columns from the ASCB Newsletter, is available free by contacting the ASCB at 301-347-9300; ascbinfo@ascb.org; www.ascb.org. Postage is not included.

CALSII as well as CALS are also accessible in PDF at www.ascb.org.

Cool Stuff ...

Cell Biology Education
FREE subscription, FREE poster

Views of the Cell: A Pictorial History
$29 each

... from the American Society for Cell Biology
8720 Woodmont Avenue, Suite 750, Bethesda, MD 20814
Tel: 301-347-9300; www.ascb.org
MEMBERS in the News

ASCB Members Elected to the American Academy of Arts & Sciences

Qais Al-Awqati of Columbia University College of Physicians & Surgeons, an ASCB member since 1984, Gideon Dreyfuss of the University of Pennsylvania, Howard Hughes Medical Institute, an ASCB member since 1991, Alfred Goldberg of Harvard Medical School, an ASCB member since 1993, John Heuser of Washington University in St. Louis, an ASCB member since 1976, Tom Rapoport of Harvard Medical School/Howard Hughes Medical Institute, an ASCB member since 1997, Louis Reichardt of the University of California, San Francisco/Howard Hughes Medical Institute, an ASCB member since 1985, Axel Ulrich (honorary foreign member) of the Max Planck Institute for Biochemistry, an ASCB member since 1984, Ajit Varki of the University of California, San Diego, an ASCB member since 1990 and Raymond White of the University of California, San Francisco, an ASCB member since 1997, were elected to membership in the American Academy of Arts & Sciences.

ASCB Members Elected to the National Academy of Sciences

Shu Chien of the University of California, San Diego, an ASCB member since 1986, Peter Devreotes of the Johns Hopkins School of Medicine, an ASCB member since 1988, Brigid Hogan of Duke University, an ASCB member since 1994, Susan Band Horwitz of the Albert Einstein College of Medicine, an ASCB member since 1980, Ruth Lehmann (foreign associate) of New York University Medical Center/Howard Hughes Medical Institute, an ASCB member since 1991, Tom Rapoport of Harvard Medical School/Howard Hughes Medical Institute, an ASCB member since 1997, Gertrud Schüpbach of Princeton University/Howard Hughes Medical Institute, an ASCB member since 1984, Ajit Varki of the University of California, San Diego, an ASCB member since 1990 and Raymond White of the University of California, San Francisco, an ASCB member since 1997, were elected to membership in the National Academy of Sciences.

Editor-in-Chief, continued from page 1

In accepting the position, Wood said, “I’m looking forward to the challenge of continuing Sally’s and Malcolm’s fine work and maintaining their high standards. I also see opportunities for CBE to grow in circulation, scope, and influence.”

Wood plans on expanding the source of potential contributors and readers outside of cell biology. “CBE’s goal from the start has been to serve all biologists,” Wood noted.

“Two things will not change. One is the free availability of the journal online to all readers. The other is the balance that Sally and Malcolm have established on the editorial board and in the targeting of articles,” says Wood.

Wood follows Elgin and Campbell in the footsteps of founding editor Sam Ward. Wood has been a member of the CBE Editorial Board since the founding of the journal.

Cell Biology Notecards

- 12 cards per box (3 of each image in the Meiosis series; 2 of each image for Mitosis)
- Descriptions on the back of each card explain meiosis/mitosis and the stage shown
- High-quality stock
- Blank inside for all-occasion use
- Presentation packaging; the perfect gift for scientists and curious non-scientists

To order contact the ASCB at 301-347-9300/ascbinfo@ascb.org or see www.ascb.org
Innovation #3: PhosphoExploration™

Phosphorylation Site Localization – Phosphospecific Antibodies
Custom Phosphospecific Antibodies – as low as $2595*
Custom Affinity Antibodies – as low as $1745*

Why choose 21st Century Biochemicals for custom peptides, custom antibodies and analytical services?

“21st Century Biochemicals had all the expertise and equipment I needed to complete a difficult proteomic project, and they've spared nothing to help me succeed; a truly reliable and competent partner for my research.”
– Luca Pellegrini, PhD, Asst. Prof., Dept. of Psychiatry, School of Medicine, Laboratory of Mol. Neurobiology, Université Laval, Quebec, Canada

“We treated lysates with phosphatase to verify that the sera were indeed specific for the phosphorylated residues. Well, they are! After phosphatase treatment, there is absolutely no cross reactivity!! This is just perfect!”
– Franck Dequiedt, PhD, FNRS, Dept. of Cell. & Mol. Biol., FUSAGX, Belgium

“After two years of failed efforts, we enlisted 21st Century Biochemicals to produce antibodies to our target peptide. Success was achieved on the first go-round.”

...only from 21st Century Biochemicals

*Limitations apply

Let our enthusiasm for science work for you!
www.21stcenturybio.com
33 Locke Drive, Marlboro, MA 01752 P: 508.303.8222
Toll-free: 877.217.8238 F: 508.303.8333 E: info@21stcenturybio.com
The ASCB Council held its semi-annual meeting in Bethesda last month, presided by ASCB President Zena Werb. As in recent years, members of Council traveled to Bethesda a day early to join members of the ASCB Public Policy Committee for Congressional meetings on Capitol Hill (see page 1.)

Representatives from Issaacson, Miller, the firm retained by the ASCB to work with the search committee to help identify and recruit its next Executive Director, attended the meeting of Council to get a sense of the activities and governance of the Society. Council announced the appointment of ASCB Information Technology Director David Driggers as Interim Director of the ASCB, effective next month and until an Executive Director is hired to succeed Elizabeth Marincola. Driggers has been ASCB IT Director since 1998.

Council discussed preliminarily recognition of the Society’s 50th anniversary in 2010. The Council hopes to work effectively with Congress to declare a national “Cell Biology Day” and to encourage the issue of a series of cell biology U.S. postage stamps. President-elect Mary Beckerle will appoint a committee to plan anniversary events.

The request of the publishers of Biology of the Cell to include the journal on the ASCB publications menu was approved. In doing so, Council expressed its support of the journal’s sponsoring organizations, La Société Francaise des Microscopie and La Société de Biologie Cellulaire de France.

Beckerle announced the appointment of a review committee to consider applications for members to host 2006 Summer Meetings, and the appointment of Dan Kiehart to chair the committee. It discussed involving the ASCB Annual Meeting Program Committee in future Summer Meeting planning and selection.

Council approved the appointment of Tony Bretscher of Cornell to serve as Chair of the Program Committee for 2006 (see page 3.) Bretscher will lead a committee that will plan the scientific program for the 46th ASCB Annual Meeting to be held in San Diego, and will identify Minisymposium Co-Chairs and Symposium Chairs for the meeting.

Treasurer Gary Ward presented a financial report to the Council and led an in-depth discussion of the financial health and investments strategy of the Society. Preliminary (unaudited) results indicate that in fiscal year 2005 the Society posted strong financial results. The annual financial report to the membership will be published in the ASCB Newsletter following the annual financial audit.

Public Information Committee Meets: CellFest Launched

A top prize of $500 in cash and a panel of ASCB judges are set for the “First Annual ASCB Cell Film Contest” to be launched this year by the Public Information Committee (PIC), with the winning entry plus runners-up to be premiered at the Annual Meeting this December in San Francisco. “We want to open the eyes of the world to the best in visually-stunning and scientifically-valid cell videos emerging each year from the labs of ASCB members,” said PIC Chair Rex Chisholm.

The “winners’ reel” from the cell film contest will be posted for free, open-access downloading and will be promoted for use in education, media outreach and other non-commercial use, said Chisholm. The film contest rules and procedures topped the agenda of the PIC’s spring meeting at the ASCB office in Bethesda. Chisholm asked PIC members Simon Atkinson, Kerry Bloom and Holly Goodson to join the film contest working group, headed by Kip Sluder.
The PIC evaluated last year’s Annual Meeting press book and discussed ideas for increasing press attendance. Members proposed focusing on “newsworthy” minisymposia, encouraging more institutional Public Information Officers to attend, and retaining the services of a professional media relations firm to raise the meeting’s public profile.

The Committee discussed effective strategies for supporting ASCB members who wish to defend the centrality of evolution to modern biology.

Public Policy Committee Considers Reauthorization, Appropriations, Policy

The Society’s Public Policy Committee met last month to review current science policy issues. In attendance were Chair Larry Goldstein, Mary Beckerle, David Burgess, George Daley, Brigid Hogan, Richard Hynes, Dan Kiehart, Doug Koshland, Sean Morrison, Bob Palazzo and Maxine Singer.

Members examined the 2006 National Institutes of Health (NIH) budget and discussed whether Congress might increase the NIH’s budget above the President’s request of just 0.7% above the 2005 budget. Goldstein told the Committee that with the current situation of limited funds for domestic programs, small increases, which are below the biomedical research rate of inflation, are effectively cuts in funding for the NIH. The Committee also discussed the anticipated budget for the National Science Foundation, which received a funding cut in 2005. The President’s budget includes a 2.4% increase for the NSF in 2006.

The Committee discussed the intention of the House Energy and Commerce Committee to reauthorize the NIH. The NIH has not been reauthorized since 1993. As part of the reauthorization process, Rep. Joe Barton (R-TX), Chairman of the Energy and Commerce Committee, seeks to reorganize the NIH, including See Committee Reports, page 24
the elimination of some institutes. The Public Policy Committee appointed a subcommittee to continue to review the reorganization plans.

The Committee reviewed pending stem cell legislation in Washington and state legislatures. Public Policy Director Kevin Wilson reported that legislation was introduced by Rep. Mike Castle (R-DE) and Diane DeGette (D-CO) that would expand the current Federal policy on Federal funding of embryonic stem cell research (see page 9). The bill gained over 200 cosponsors.

Also discussed was legislation in the House of Representatives, sponsored by Rep. Mary Bono (R-CA), similar to a Senate bill by Sen. Hatch (R-UT), to outlaw reproductive cloning while enabling somatic cell nuclear transfer research under strict regulation. Members of the Committee will offer their support to Reps. Castle, DeGette and Bono, and Sen. Hatch.

Goldstein briefed the Committee on the status of the new California Institute for Regenerative Medicine. Palazzo reported that New Jersey, Connecticut and Wisconsin are making progress in allocating money for research; New York is still struggling to get legislation passed.

Continuing efforts in a number of states to include Creationism and/or Intelligent Design in state science curricula (see page 9) were also discussed.

WICB Committee Plans

Annual Meeting Programs

The Women in Cell Biology Committee met last month in Bethesda.

In attendance were Chair Ursula Goodenough, Susan Forsburg, Laurie Littlepage, Elizabeth Marincola, Randy Schekman, Marcia Steinberg, Vivian Siegel and Thea Tlsty.

Rebecca Heald was selected for the WICB Junior Award and Elizabeth Blackburn for the WICB Senior Award (see page 12).

The Annual Career Lunch was discussed and table topic attendance over the preceding six years was reviewed. The Committee determined to gather another year’s data to review for possible changes in 2006.

The Evening Program will be on “Balancing the Imposter Syndrome and Over Confidence.” The Workshop will be on, “From Conflict to Confidence: Negotiating Day-to-Day Conflicts,” to be moderated by Michael Milano.

AXXS sponsored a successful subgroup workshop on “Advancing the Careers of Women Scientists: A Role for Everyone” at the 2004 Annual Meeting.

The Speaker Referral Service is being updated and will be promoted to Society members. The new WICB Website is under development.
200 New Members Admitted to the ASCB

The ASCB Council admitted the following 200 new members to the Society at its recent meeting:

Albert H. Gough
Anna Gumpert
Xizhi Guo
David R. Halpin
Sejin Han
Tariq Haq
Koichi Hattori
Beate Heissig
Robert F. Hennigan
Toyoko Hiroi
Stacey L. Hose
Norma L. Houston
Nelson Hsia
Jian Huang
Matthew R. Hynd
Elias Bernard Jackson
John Allen Jellies
Manrong Jiang
Azuree Danielle Johnson
Kimberly J. Jones
Emily Joo
Jeong-Hoon Joo
Helmut Kae
Christof Von Kalle
Deependra Kantha
Geoffrey M. Kapler
Connie E. Kim
Jeong-Yoon Kim
Yeun Ji Kim
Ajay N. Kiri
Michael Kozlov
Ushma Kriplani
Antoine Muchir
Douglas G. Muench
Gleeson Murphy
Monn Monn Myat
Ashish Nagarshkar
Kelly Ayana Nebhard
Shinsuke Niwa
Genevieve H. Nonet
Tadashige Nozaki
Edem Nuglozeh
Phillip S. Oates
Neal N. Padte
John David Pajerowski
Sergiy Pampou
Jie-Hong Pan
Hyeon Ung Park
Jie Eun Park
Kwang Joo Park
Morag Park
Sung Jun Park
Sunita R. Patel
Diego Adolfo Peretti
Emilie Perret-Gherghout
Alexander Werner Peterson
Bruce Alan Pfeffer
Paty Purcell
Li Qi
Pampa Ray
Brent Clyde Reed
Humberto D. Ribeiro
Stephen Ribisi
Richa Rikhy
Natalya V. Rozanova
Fayez S. Safadi
Kekko Sakai
Arsuo T. Sasaki
Claudia Eva Maria Schaller
Betty Schwartz
Parijat Sengupta
Jwalitha Shankardas
Hanshuang Shao
Deepak K. Sharma
Kristin Melinda Sherrard
Xiaobing Shi
Adrian Shifren
Michael Shuartman
Oleg Shuplakov
Gurjit S. Sidhu
Olga Simakova
Hyo Won Son
Timothy M. Sonbuchner
Jiannan Song
Shaul Yalovsky
Qiaoxin Yang
Zemin Yao
Liqun Yin
Woohyun Yoon
Cong Zhang
Jun Zhang
Zhiyong Zhang
Guang-Qian Zhou
Guang-dan Zhu

Members Granted Emeritus Status

John Browne
Christian DeDuve
William Dewey
Elizabeth Hay
Brigitte Jockbush
Sau-Wah Kwan
Harold Lane
Alfred F. Michael
Oscar Scornik
David Shepro

Subcommittee on Postdoctoral Training (SCOPT)

a) Are you a post-doc?
b) Do you have ideas how ASCB can help post-docs develop their careers?
c) Would you like to expand your network and gain new experiences?
d) Do you think it is important for post-docs to organize?

If you answered, “YES” to any of the above questions; then join SCOPT!!

Website: www.ascb.org/committees/edcom/postdoc.html. Respond to postdoc@ascb.org

JUNE 2005 ASCB NEWSLETTER
Dear Labby,

I am a third-year graduate student and I just did the most exciting experiment of my relatively short scientific career. I was ecstatic until I overheard another graduate student in the lab discuss this experiment as Figure X in ‘his’ paper, which he could now (with the addition of my data) submit to a high-profile journal. The experiment would also be an exciting addition to ‘my’ paper that I am in the process of putting together. How do I deal with this uncomfortable and distressing situation?

—On a Black Cloud Nine

Dear Black Cloud,

This situation is where a trusted and fair advisor can step in. It is your advisor’s role to decide where your data will best fit in publications that will optimize the scientific stories that have been developed by you, your colleague and the lab. Trust that your advisor has the wisdom accrued from considerable experience in publishing her/his research and that he or she will thoughtfully consider how your exciting experiment will have maximum impact. Remember that if your data significantly enhances a paper on which your colleague is first author, you will likely be second author and will end up with two papers on your curriculum vitae instead of one. In addition, your advisor will make clear the key role you played in this second-author manuscript in letters of recommendation that she or he will write to promote your career at later stages.

Finally, your advisor may also want to discreetly advise your colleague that discussion of how your data will be published without consulting you is inappropriate and insensitive. Sometimes we all need advice on how to be better colleagues and labmates.

—Labby

Chair of the Department
Anatomy and Cell Biology

The Brody School of Medicine at East Carolina University in Greenville, NC, announces a search for the Chair of the Department of Anatomy and Cell Biology. The Department has 10 full-time faculty, two part-time faculty, seven staff, one postdoctoral fellow, two office support staff, and six doctoral students. The faculty provide instruction in the anatomical disciplines to students in the School of Medicine and Allied Health. The faculty are actively involved with research areas that include cancer cell signaling; kinesin motors during spermatogenesis; mitochondria and peroxisomes in obesity; ovarian innervation; tight junction function and regulation; neuronal growth and differentiation and educational models and distance learning.

Applicants for the position should have a doctorate in Anatomy and Cell Biology or a related field, and evidence of effective administrative and interpersonal skills. The Chair is expected to foster and participate in research interactions and collaborations with other basic science and clinical departments in the Brody School of Medicine and establish a long-term plan that secures a national reputation for the department. The Chair will have the opportunity to recruit faculty to build on current strengths of the department. The Chair reports to the Dean of the Brody School of Medicine. Applications by female and minority candidates are strongly encouraged.

Korn/Ferry International is assisting ECU in this search. Please forward, as soon as possible, applications to: John H. Moxley, M.D. (moxley@kornferry.com), 1900 Avenue of the Stars, Suite 2600, Los Angeles, CA 90067.

East Carolina University is an AA/EOE

Curator
The American Society For Cell Biology
Image And Video Library

The ASCB seeks a skilled and dedicated cell biologist to serve as Curator to guide the launch of the ASCB Image and Video Library. The Library will offer an accessible, searchable, comprehensive electronic database of high-quality images and movies demonstrating molecular and functional organization of healthy and diseased cells.

The Curator will build and maintain the Library, assisted by technology and archiving staff, and in partnership with a Scientific Advisory Board.

Requirements include broad training in cell biology. Expertise in microscopy preferred. Apply to:

The American Society for Cell Biology
8120 Woodmont Avenue, Suite 750
Bethesda, MD 20814-2762
Or
president@ascb.org

LAB BY

DEAR Labby
GRANTS & OPPORTUNITIES

Call for BioClips. Enter the “Cinema of the Cell” contest during the ELSO Meeting in Dresden, Germany, September 3-7 (see http://www.elso.org). See http://bioclips.com.

2005 NIH Director’s Pioneer Award. A key component of the NIH Roadmap for Medical Research, the award supports scientists of exceptional creativity who propose pioneering approaches to major challenges in biomedical research. http://nihroadmap.nih.gov/pioneer/.

NIH Grants.

MEMBER
Gifts

The ASCB is grateful to the following members who have recently given a gift to support Society activities:
Graciela Candelas
Jean Chin
David Epel
Jeffrey Kuhn
Mark Majesky
John Pringle

Endowed Professorship in The Stem Cell Biology of Muscle & Cartilage

The Dorothy H. & Lewis Rosenstiel Department of Pharmacology and Biological Chemistry and the Black Family Stem Cell Institute, Mount Sinai School of Medicine, invite nominations and applications for a senior faculty position in the field of stem cell biology of muscle and cartilage.

The selected candidate will be at the senior Associate Professor or full Professor level, be eligible for a tenured appointment, and will occupy the Dr. Amy and James Elster Chair.

We are looking for outstanding candidates with established research programs that have and will continue to make definitive contributions to our understanding of biological mechanisms of organogenesis and developmental disorders. Areas of interest include cell differentiation and control of cell matrix interactions during development, the role of autosomal dominant mutations in stem cell differentiation, and stem cell biology approaches to study Marfan's syndrome induced developmental disorders.

A competitive start-up package and substantial ongoing support will be available to the occupant of the Elster Chair. The candidate will have a primary appointment in the department and be a member of the inter-departmental Black Family Stem Cell Institute and thus have serious and sustained interactions with both current school faculty and other planned recruits in the Institute.

Applications should include CV, a brief description of current research and future research plans, 3-5 key primary publications and names of 3 references. Please send nominations and applications to: Gordon Keller, Ph.D., Chairman, Elster Endowed Professorship Search Committee, c/o Departmental Administrator, The Dorothy H. & Lewis Rosenstiel Department of Pharmacology and Biological Chemistry, Box 1215, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029. Equal opportunity employer. We particularly welcome applications and nominations from women and under-represented minorities in science.

Northwestern University’s Feinberg School of Medicine in Chicago is searching for a new Chair to lead a major expansion of its Microbiology-Immunology Department. The Department presently has 19 primary research faculty members with active programs in Molecular Virology, Immunology, or Microbial Pathogenesis (http://bugs.mimnet.northwestern.edu/labs/). The new department chair should have an MD, PhD or combined MD/PhD degree and is expected to have exceptional leadership skills as well as an outstanding, internationally-recognized and well-funded research program. The Chair will have the opportunity to build upon a strong base and expand the department in new directions. The Chair will also be responsible for promoting the research programs and teaching efforts of the departmental faculty as well as fostering school-wide programs in related areas. The position is full-time with salary and starting date negotiable. Interested candidates should submit a letter of intent, curriculum vitae, and contact information for at least three references to: Prof. Gary Borisy, PhD, Chair of the Microbiology/Immunology Search Committee, c/o Sheri Carney, Recruitment Coordinator, 303 E. Chicago Avenue, 4-161 CHW125, Chicago, IL 60611. Electronic applications (Word file or PDF) are preferred and should be sent to microsearch@northwestern.edu. To ensure consideration, applications should be received by August 1, 2005.

Northwestern University is an Affirmative Action/Equal Opportunity Employer. Hiring is contingent upon eligibility to work in the United States. Women and minorities are encouraged to apply.
ASCB Annual Meetings

<table>
<thead>
<tr>
<th>Year</th>
<th>Location</th>
<th>Dates</th>
<th>Event Description</th>
<th>Website</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Euroconference: NMR in Molecular Biology.</td>
<td>www.esf.org/conferences</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>September 1-5. Muensterschwarzach Abbey, Germany.</td>
<td>www.zeb.biozentrum.uni-wuerzburg.de</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The Wilhelm Bernhard Workshop–19th International Workshop on the Cell Nucleus.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>September 17-22. Sant Feliu De Guixols, Spain.</td>
<td>www.esf.org/conferences</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Membrane Dynamics in Endocytosis.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>September 3-7. Dresden, Germany.</td>
<td>www.elso.org</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>European Life Scientist Organization Annual Meeting.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15th International Society of Developmental Biologists Congress (ISDB).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Strategies for Engineered Negligible Senescence (SENS), 2nd Conference.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>September 23-23. Nashville, TN.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>September 25-29. Tomar, Portugal.</td>
<td>www.cellstress.uconn.edu</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Second International Congress on Stress Responses in Biology and Medicine held by</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The Cell Stress Society International.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>October 2-5. Edinburgh, UK.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dynamics during Infection.”</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>October 8-13. Sant Feliu De Guixols, Spain. Three-Dimensional Sensory and Motor</td>
<td>www.esf.org/conferences</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Space. ESF-EMBO Symposia.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>October 29-November 3. Sant Feliu De Guixols, Spain. Three-Dimensional Sensory</td>
<td>www.esf.org/conferences</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>and Motor Space. ESF-EMBO Symposia.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>November 12-17. Sant Feliu De Guixols, Spain. Comparative Genomics of Eukayotic</td>
<td>www.esf.org/conferences</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Microorganisms. ESF-EMBO Symposia.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Meeting. Abstract submission deadline: July 28.</td>
<td></td>
</tr>
</tbody>
</table>