Alberts Elected President for 2007
Condeelis, Masur, Meyer and Ridley to Serve on Council; Undergrads to Qualify for Membership

Bruce Alberts of the University of California, San Francisco, was elected by the ASCB membership to serve as Society President in 2007. He will serve on the Executive Committee as President-elect in 2006 and will succeed Mary Beckerle as President.

Jean Schwarzbauer of Princeton University will succeed Larry Goldstein as ASCB Secretary and will serve a three-year term. Gary Ward of the University of Vermont will serve a second term as Treasurer of the Society.

Elected from among eight candidates for Council are John Condeelis of the Albert Einstein College of Medicine, Sandra Masur of Mt. Sinai School of Medicine, Barbara Meyer of the University of California, Berkeley, and Anne Ridley of the Ludwig Institute for Cancer Research, UK. Each member of Council will serve a three-year term beginning January 1, 2006.

Resolutions to create a new category of undergraduate membership in the ASCB, and to enable appointment of member financial experts to the Finance & Audit Committee, were approved overwhelmingly.

Steitz Named E.B. Wilson Medalist

Joan Steitz of Yale University and the Howard Hughes Medical Institute will receive the ASCB’s E.B. Wilson Medal this year, the Society’s highest honor for science. Steitz, a leader in the field of RNA splicing and RNA metabolism, will be presented the Medal and give an honorary lecture at the 45th ASCB Annual Meeting in San Francisco on Sunday, December 11.
PRESIDENT’S Column

Are There Too Many Meetings?

The summer season is upon us with ASCB Summer Meetings, Gordon Research Conferences, FASEB Summer Research Conferences, and so on. Then there are the fall meetings, the winter “ski” meetings and the spring meetings all over the globe. Finally, there are the large annual meetings of societies like the ASCB.

There was a time when the average cell biologist went to the ASCB Annual Meeting and maybe one summer conference. Are there too many meetings now?

Why has there been such a proliferation of meetings?

Certainly there are many more cell biologists now than when I was a student, but even accounting for this, conferences have proliferated disproportionately. Even students get opportunities to go to multiple meetings each year. As the number of scientific fields grows, there is a demand for small focused specialty meetings. That sounds like a good idea until you see that the same few people are speaking at five or six meetings in the span of a few months.

With so many meetings, the choice is so bewildering that the easiest way out is not to make a choice at all. In an era of decreasing discretionary funding, a travel budget is viewed as a luxury that is the first to go, particularly for those scientists and teachers who want to attend but are not invited speakers. Alas, these are the individuals who may most benefit from the conferences.

There are many meetings of overlapping topics, some of which have the appearance of vanity vehicles for the organizers, or an excuse for a vacation in a luxurious or interesting location.

There are many meetings of overlapping topics, some of which have the appearance of vanity vehicles for the organizers, or an excuse for a vacation in a luxurious or interesting location. Scientists sometimes become “addicted” to going to meetings to which they are invited, because they glean fame and kudos—something much harder to come by at home and work where those with whom you interact often are intimate with your human weaknesses, not just your scientific machismo.

Another complication is that many meetings make money for the non-profit and for-profit entities that sponsor them. Commercial sponsors often offer speakers generous honoraria to snag major figures in the field, and thus provide incentives for even more conferences.

A distressing fact is that many scientists, by being away from their laboratories, count conferences as de facto vacations, and do not take additional time to refresh and renew themselves and devote dedicated time to their families.

We need a long hard look at the future of conferences. Duplication in conferences and conferences of dubious scientific merit indicate that the scientific community is not taking its responsibility for peer review seriously, or that it is not given that opportunity.

Conferences, like scientific papers, need to be peer-reviewed. This is absolutely necessary for the welfare of the community. The real problem then may not be the proliferation of conferences per se but the paucity of reviewers who can speak to the validity of the conferences.

More and more meetings are being web cast, if not in real time, then after the meeting is over. Virtual participation gives scientists an opportunity to learn what is new and hot, and is usually also more cost-effective and always more time-efficient than actual attendance. But it cannot replace the networking and camaraderie that also is an essential part of going to a meeting.

Regional meetings need to re-energized. They are important because they bring science to the consumer, not the consumer to the science, which is cost effective, and can engage more local students and post-doctoral fellows who have limited travel funds, as well as scientists with family commitments that make it hard to get away for a week. But attending a meeting close to home also lends itself to the temptation to slip away rather than hear about new topics.
How do we optimize the diversity of conferences in an intimate setting while highlighting emerging topics in cell biology? More of the small- to medium-sized meetings need to strive to cover original topics and to highlight and facilitate interdisciplinary science. This is exactly what the small number of ASCB Summer Meetings hopes to achieve. There is plenty of time to propose to organize a summer meeting in 2007.

The ASCB Annual Meeting is unquestionably a great value, with its stellar scientific program, as well as many special mentoring and networking events. It costs much less than most other conferences. The definitive meeting of any field, like the ASCB Annual Meeting, offers the unique advantage that it attracts a critical mass of cohorts and leaders of the field. But the ASCB may be unique in the substantive opportunities it offers members to organize their own scientific sessions, open for no extra cost to meeting registrants. There is also an explicit policy for the Program Committee to invite only those Symposium speakers who have not spoken at the meeting in the past several years. In addition, Minisymposium co-chairs are instructed to select at least half of Minisymposium speakers from among abstract submissions, and many of the talks are given by students or post-doctoral fellows. These requirements keep the program fresh and ensures a diverse range of speakers at each meeting and year-to-year.

The member-initiated symposia that are held on Wednesday morning give ASCB members opportunities to propose and organize symposia in areas that they think are at the cutting edge. There is still an opportunity to participate in these meeting choices for the 2005 meeting. So while there has been conference inflation, and the potential for deflation is a reality, the choice of cell biologists is clear. Keep coming to the ASCB meetings and the meetings will continue to evolve. And if the meetings do not meet your expectations, become involved and make the meetings fit your dreams.

Comments are welcome and should be sent to president@ascb.org.
The ASCB 45th Annual Meeting
December 10-14, 2005, San Francisco

Zena Werb, President ■ Linda Hicke, Program Chair ■ Aaron Straight, Local Arrangements Chair

MINISYMPOSIA

Building Sensory Networks
Hermann Bader, University of California, San Francisco
Gero Miesenbock, Yale University School of Medicine

Cargo Sorting & Vesicular Transport
Robert Piper, University of Iowa
Anne Spong, Max Planck Institute, Tübingen

Cell Biology of the Synapses
David Colman, McGill University
Janet Richardson, University of Illinois

Cell Migration/Motility
Peter Friedl, University of Würzburg
Carole Parent, National Cancer Institute/NIH

Chromatin Dynamics
Tatsumi Kohsue-Shigematsu, Lawrence Berkeley National Laboratory
Danesh Mozazed, Harvard Medical School

Coordinating Adhesion & Signaling
Ari Ben-Ze'ev, Weizmann Institute of Science
Vania Broge, Imperial College London

Coordination of Cytoskeletal Networks
William Bement, University of Wisconsin, Madison
Talha Valle, Weizmann Institute of Science

Cytoskeletal Dynamics in Living Cells
Velia Fowler, The Scripps Research Institute
Steven Groot, University of California, Irvine

Cytoskeletal Molecular Motors
Suzan Gilbert, University of Pittsburgh
Margaret A. Tains, University of Minnesota

Differentiation & Cancer
John Cleveland, St. Jude Children’s Research Hospital
Xi He, Children’s Hospital, Boston

Molecular Morphogenesis & Polarity
David Bider, University of California, Berkeley
Heike Fischbach, Northwestern University

Transport at Membranes & Signaling
Josephine Adams, The Cleveland Clinic Foundation
Joanne Murphy-Ullrich, University of Alabama at Birmingham

Organelle Dynamics
Stuart Gilbert, University of California, San Francisco

Protein Misfolding & Disease
William Baldi, The Scripps Research Institute
Harry Orr, University of Minnesota

Regulating Interorganellar Signaling
Andrew Knutczuk, Emory University School of Medicine
Yoshimi Takai, Osaka University

RNA Silencing Mechanisms
Bennie Bartel, Rice University
Greg Hammel, Cold Spring Harbor Laboratory

Signaling in the Immune System
Jason Ouster, University of California, San Francisco/HHMI
Michael Dustin, New York University School of Medicine

Signaling in 3D Environments
Jeffery Hubbell, Swiss Federal Institute of Technology
Senthil Muthuswamy, Cold Spring Harbor Laboratory

Stem Cell Niche
David Scadden, Massachusetts General Hospital
Allan Spradling, Carnegie Institution of Washington/HHMI

Trafficking Proteins & Complexes
James Hurley, National Institute of Diabetes & Digestive & Kidney Diseases/NIH
Harvey McMahon, MRC Laboratory of Molecular Biology
Introducing the **WhisperFuge™**

The Gentle Bench Top Disc Centrifuge from Westfalia Separator.

With a 12” by 20” footprint this bench top lab centrifuge fits almost anywhere. Yet it delivers impressive clarification and g-force, for the following applications:

- Microbial Separation
  - E-coli
  - Lysate
  - Inclusion Bodies
  - Yeast
- Mammalian Cells
- Vaccines
- Enzymes

Benefits include:

- Easy installation
- Low maintenance
- Rapid and easy bowl dismantling for cleaning
- Accurate scale up to larger units
- Compact size allows for installation under lab style hood

For more information, call Derek Ettie at (201) 784-6477.

**GEA Westfalia Separator, Inc.**
A company of mg technologies group

Westfalia Separator, Inc. • 100 Fairway Court • Northvale, NJ 07647
Tel: (800) 722-6622 • Fax: (201) 784-4331
After Sales Service: (800) 509-9299
www.wsus.com
Thematic Meetings

**MOLECULAR STRUCTURE**
Macromolecular Structure and Dynamics
Andrey Sali, UCSF
Proteomics and Bioinformatics
Michael Snyder, Yale University
David S. Eisenberg, UCLA
Chemical Genetics and Drug Discovery
Chaitan Khosla, Stanford University
Kevan Shokat, UCSF
Glycobiology and Extracellular Matrix
Carlos B. Hirschberg, Boston University Goldman School of Dental Medicine

**GENOME DYNAMICS**
Genome Dynamics: Replication, Repair, and Recombination
Laurie S. Kaguni, Michigan State University
Chromatin: Structure, Expression, and Regulation
Sharon R. Dent, University of Texas M. D. Anderson Cancer Center
RNA: Structure, Metabolism, and Regulation
Alan D. Frankel, UCSF
Protein Synthesis, Folding and Turnover
William Merrick, Case Western Reserve University

**CELL SIGNALING**
Metabolic Regulation
Richard W. Hanson, Case Western Reserve University
Daryl K. Granner, Vanderbilt University
Signaling in Growth and Development
Michael B. Yaffe, MIT
Signaling in Aging and Disease
Natalie G. Ahn, University of Colorado at Boulder

**MEMBRANE BIOGENESIS**
Biochemistry and Molecular Biology of Lipids
George M. Carman, Rutgers University
Christian R.H. Raetz, Duke University
Structure, Function, and Biogenesis of Cell Membranes
William Dowhan, University of Texas-Houston Medical School

**EDUCATION AND PROFESSIONAL DEVELOPMENT SYMPOSIA**
J. Ellis Bell, University of Richmond

**MINORITY AFFAIRS SYMPOSIA**
Juliette Bell, Fayetteville State University

2006 Program Co-Chairs
George M. Carman, Rutgers University
Laurie S. Kaguni, Michigan State University

Special Events
Centennial Opening Celebration
An Evening with the San Francisco Symphony
A Taste of San Francisco

Award Lectures
Herbert Tabor/Journal of Biological Chemistry Lectureship
ASBMB-Amgen Award
ASBMB Award of Exemplary Contributions to Education
ASBMB-Merck Award
Avanti Award in Lipids
Herbert A. Sober Lectureship
Howard K. Schachman Public Service Award
Schering-Plough Research Institute Award
William C. Rose Award

www.asbmb.org/meetings
When Smart Becomes Simple
Brilliant Imaging at Your Fingertips

The new Leica DMI 6000 B Inverted Digital Research Microscope is designed to form the nexus of complex live cell experiments.

- Attach multiple light sources and detectors with unparalleled flexibility.
- Rapidly flip between excitation wavelengths with fast internal filter wheel.
- Perform complex experiments under full-motorized control.
- Benefit from excellent stability and full environmental control for time lapse measurements.

Every image is perfectly adjusted using Leica Microsystems’ Intelligent Automation. Imagine being able to instantly switch contrast techniques and simultaneously restore your optimized settings by simply touching a button. Dramatically improve your live cell imaging! Call Leica today at 800-248-0123.

Intelligent Automation

Leica Microsystems Inc.
2045 Waukegan Road
Bannockburn, IL 60015

Telephone (847) 405-0123 (800) 248-0123
Fax (847) 405-0164
In Canada call (800) 205-3422.
www.simply-microscopy.com

© 2004 Leica Microsystems Inc., BAAH472
How to Read a Letter of Recommendation

If everyone exercised rigorous thought in writing letters of recommendation,¹ then it would be happily unnecessary to offer advice on how to read them. In this perfect world, all letters would be transparent, they would contain all of the information we need, and therefore they would not require interpretation. Unfortunately, we are not quite there yet. So, here is some humble advice on how to read recommendation letters in the real world.

Most importantly, always keep letters in perspective. Although some will provide honest, accurate, and useful assessments of a candidate, other letters will fall well short of the mark. The challenge for the reader is to distinguish one from the other. The best training for reading a letter is knowing how to write one, but even this wisdom is not foolproof. Therefore, letters must never be used as a substitute for one's own assessment of a candidate based on his/her accomplishments and ideas, or the impression he/she makes when interviewed. All too often, particularly when considering promotions, letters are taken as a substitute for a faculty's collective judgment, with committees tending to use a stack of glowing letters as a crutch to support a positive decision rather than relying on their own, often more direct, observations. Conversely, if one or two letters in a pile are deemed "negative" (or anything less than embarrassingly enthusiastic), one or more committee members typically get spooked, losing confidence in their own assessments; or they will use such letters as an excuse to derail a candidate they do not like but against whom they could not otherwise make a persuasive argument. Even when well written, one must remember the obvious: letters of recommendation are inherently subjective. Unless an opinion of a candidate can be supported by convincing, objective, and factual arguments, be wary of placing too much emphasis on what any writer has to say.

If letters are potentially so flawed, what use are they? Why do we even bother? In actual fact, letters can be extremely important, but only as one component of the evaluation process. Letters have two purposes; neither of them is to on their own predominantly determine the fate of the candidate.

First, when written by a close colleague or mentor, a letter can provide helpful insight into a candidate's motivation, thought processes, personality, creativity, potential, independence, and ability to work with others. At the very least, this assessment should be used to sensitize a committee to look for certain qualities in an interview: i.e., give committee members a chance to obtain primary data to test every aspect of the accuracy of the letter's assessment.

Second, when written by a more "impartial" expert (thesis committee member, outside referee), a letter can provide a highly useful opinion into the importance of a candidate's work in advancing knowledge and understanding in a given field. This is especially helpful when the committee does not contain experts in the candidate's area. A mentor can provide this information as well, but readers must beware that a mentor's assessment may be biased by the mentor's interest in advancing (even unintentionally) the perception of his or her own legacy and accomplishments. With that disclaimer, a mentor's evaluation of a candidate's place in the scientific universe can be valuable, as the mentor can probably assess this better than anyone else. Obviously, if the candidate is already an independent investigator, the longer he or she has been on their own, the less the committee need consider the mentor's assessment of the importance of the candidate's contributions.

Deconstructing the process of letter writing provides a blueprint for reading a
It is rare from an expert naming another players in an area these requests should be ignored. A statement such comparisons in their requests for letters; than your own. Some institutions even ask for opinion, one which may or may not be better from each other, you are just getting someone's individual mentioned distinguishes them the contributions or other qualities of the information simply compounds the subjectivity problem. Some people are called a technique that should be read with skepticism is the comparison: the candidate is as good as Dr. X and Y, but not as good as Dr. Z. This type of information simply compounds the subjectivity problem.

Comparisons. Another common technique that should be read with skepticism is the comparison: the candidate is as good as Dr. X and Y, but not as good as Dr. Z. This type of information simply compounds the subjectivity problem: unless it is explicitly stated why the contributions or other qualities of the individuals mentioned distinguishes them from each other, you are just getting someone's opinion, one which may or may not be better than your own. Some institutions even ask for such comparisons in their requests for letters; these requests should be ignored. A statement from an expert naming other players in an area can be extremely useful, so you (or an expert on the committee) can explore whether your candidate's contributions are as exciting or high quality as those of his/her peers or colleagues.

Paper counting and the “CNS Syndrome.” The number and prestige of awards held by the letter writer is almost always irrelevant. A thoughtless and dismissive letter by a famous scientist (‘since I do not have time to write, suffice it to say that I am wonderful and I believe the candidate is wonderful, therefore the candidate is wonderful’) is just as useless as a similarly thoughtless letter from an unknown scientist. However, a thoughtful letter from a respected colleague who has a sense of perspective can be incredibly valuable.

What else should one look for, or not look for? Here is a partial list:

Code words. Many of us engage in an almost semiotic analysis of precise words used, or not used, to describe a candidate. Is ‘outstanding’ better than ‘excellent’? Is being ‘the best’ in the field better than being merely ‘one of the top three’? Does that mean the candidate is #3 and therefore not as good as #1? Are his/her contributions “solid”, meaning boring and inconsequential? If we all used the same codebook, this exercise would be useful, but we do not. Therefore do not place much faith in this exercise. Even using language and word choice to gauge overall enthusiasm is dangerous, as different individuals exude enthusiasm in radically different ways. The guiding principle is to look for the evidence that substantiates the platitudes.

Comparisons. Another common technique that should be read with skepticism is the comparison: the candidate is as good as Dr. X and Y, but not as good as Dr. Z. This type of information simply compounds the subjectivity problem.

A technique that should be read with skepticism is the comparison: the candidate is as good as Dr. X and Y, but not as good as Dr. Z. This type of information simply compounds the subjectivity problem.

The number and prestige of awards held by the letter writer is almost always irrelevant.

Paper counting and the “CNS Syndrome.”

The number of papers matters less than their quality. Further, the journal that publishes a paper is not a guarantee of quality. Believing otherwise is the product of what I call “The CNS Syndrome:” a condition in which letter writers (and committee members) pay morbid attention to how many papers were published in Cell, Nature, or Science. CNS Syndrome bequeaths to unknown reviewers and editors a disproportionate influence on the appointments and promotion process. As a mature evaluator, it is your obligation to independently and intellectually assess the quality of a candidate—not relinquish this solemn responsibility to unseen others. When faced with a letter that goes out of its way to extol the number of papers a candidate has published in Cell, Nature, or Science (or even worse, in their F1 spawn), let the reader beware. This can be an indication that the writer is overly influenced by superficial rather than substantial considerations.

Time is precious. Some people are called upon to write a disproportionate share of letters, as well as to perform a variety of other community and professional responsibilities. As a group, these individuals may not have as much time as they—or you as a reader—would like them to have prepare their letters. Make allowances for this as you read.

Dealing with negativity. It is rare that one receives a truly “negative” letter; more common, we sometimes interpret as negative letters that merely include mention of a candidate’s shortcomings. There is a general phobia about being too honest; writers often fall victim to another disorder, The Mr. Rogers Syndrome: “everyone is

“The CNS Syndrome:” a condition in which letter writers (and committee members) pay morbid attention to how many papers were published in Cell, Nature, or Science.
special." Thus, a negative letter should be evaluated carefully and in the same way as one evaluates a positive letter: does the writer support his/her contentions with facts and objective observations? Does the writer have professional or personal biases, even inadvertent ones? This writer may be doing a difficult but honest and helpful thing by alerting the reader to problems with a candidate, but he/she may also just be expressing an opinion, however deeply and honestly held, that may not coincide with your own. Do not let even a truly negative letter kill a candidate unless you can independently verify what it contains, and you agree that the negative features should affect your decision.

Reading letters is the same as writing them: a believable and influential letter is one that gives an honest opinion based on demonstrable fact. The closer a given letter comes to reaching this goal, the more influential it should be. At the same time, an evaluator must never ever allow a letter – or even a set of letters – to substitute entirely for her or his own judgment. Doing so is intellectually lazy and a recipe for making wrong decisions.

— Ira Mellman

Writers often fall victim to another disorder, The Mr. Rogers Syndrome: “everyone is special.”

A believable and influential letter is one that gives an honest opinion based on demonstrable fact.

LETTER to the Editor

The Challenge of Children

To the Editor:

I enjoyed Ira Mellman’s informative article on How to Write an Effective Letter of Recommendation in the May 2005 ASCB Newsletter. However, the author uses some unfortunate language regarding career interruptions.

He explains that “If a candidate has had personal difficulties to overcome...,” the writer of a letter of recommendation should mention this.

Good advice. Ironically for a WICB column, he includes children in his examples of “difficulties to overcome.” Admittedly, children can be difficult, but they are not a problem to “overcome.”

Although the example of children is appropriate to the topic, the particular language used perpetuates negative perceptions (real and imagined) about the effects of child-rearing on scientific careers that writers in this column, and the ASCB in general, have been actively fighting.

— Neil Adames

University of Alberta

Ira Mellman responds:

Perhaps Neil Adames never had teenagers. Seriously, I accept his point that children do not comprise the same type of problem to overcome as does an “illness.” It would have been better to characterize the issue as the "challenges and time demands" of having children, although this was a very minor point in my essay.

But as long as the issue was raised, I disagree with Neil Adames’ implied conclusion. While child-rearing and -raising should not be allowed to get in the way of a scientific career, the fact is that they do. It is also true that a scientific career gets in the way of raising children. Until we are willing to recognize these facts, we will never be able to force our institutions to deal realistically with solving this most serious challenge.

MEMBERS in the News

Eric Olson of the University of Texas Southwestern Medical Center, an ASCB member since 1984, was named the Annie and Willie Nelson Professor in Stem Cell Research.

John A. Smith of the University of Alabama at Birmingham, an ASCB member since 1971, was awarded a Doctor of Science (Honoris causa) from Purdue University. He was also named Vice President-elect of FASEB.
500 Day Plan Announced by HHS

Secretary of Health & Human Services Mike Leavitt has announced a 500 day personal plan for the Department. In a memo to HHS employees, Sec. Leavitt said that he would devote at least half of his time to a list of actions that he “can take during the next 500 days that will benefit the American people over a 5,000 day period.”

Leavitt outlined his goals for the Advanced Medical Research section of the plan as “creating an integrated electronic network of privacy-protected population data, genetic information and medical records to accelerate discoveries.”

Consistent with the NIH Road Map for Medical Research, he plans to “combine skills and disciplines in the biological, physical and social sciences to yield biological insights.” The Department also states its intention to improve the clinical research network and to “implement a comprehensive plan for obesity research that will maximize collaboration among HHS stakeholders.”

Reports Call for Changes to U.S. Immigration Policy

The National Academy of Sciences has released a report recommending a series of changes to the current American visa program. The report, which seeks to counter the impression that foreign students and scholars are not welcome in the U.S., has been transmitted to the Departments of State and Homeland Security and the Office of Science and Technology Policy at the White House.

Recommendations include the extension of Visa Mantis security clearances for foreign scientists working in the United States to coincide with the duration of academic appointments. Current clearances are good for two years.

The report also recommends that students and researchers should not be forced to leave the United States in order to renew their visas. Currently, at the end of the term of a visa, students and researchers must return home in order to apply for a renewal.

The report asks that immigration policies additionally be changed to give weight to academic intent and financial status in visa determinations. Currently, the ability to convincingly demonstrate evidence of residence and employment in the home country are the major criteria for entrance. These are particularly challenging standards for students who have yet to establish themselves.

The report also suggests that foreign students studying in the United States should be allowed to travel outside of the United States in order to attend scientific meetings.

Similar suggestions were made in a report released by the Committee on Science, Engineering, and Public Policy (COSEPUP) of the National Academies. The COSEPUP report calls on the establishment of new visa categories for doctoral level graduate students and postdocs that recognize the unique nature of their work. The new categories would make it easier for scholars and students to travel to the United States for formal training and also to participate in scientific meetings and short term collaborations.
**Senate Stem Cell Vote Expected This Month**

Biomedical research supporters in the Senate indicate that the Senate will vote on its version of H.R. 810, the Stem Cell Research Enhancement Act of 2005 sometime this month. The bill would expand the current Federal stem cell policy to allow Federally-funded researchers to use embryonic stem cell lines derived after August 9, 2001. The bill passed the House of Representatives in May, 238 to 194. The Senate version, S.471, has strong bipartisan support in the Senate.

Thirty-eight Senators from both political parties have cosponsored the bill and others have indicated they would vote for the bill on the Senate floor. Consideration of the House bill in the Senate is a parliamentary maneuver to force the bill to be sent directly to the White House for approval or veto by the President without returning to the House of Representatives. All Senate amendments to the House bill would have to be defeated during Senate consideration of the bill.

---

**Creationism Monitor**

**Utah**—State Sen. Chris Buttars has proposed requiring that public schools in Utah teach “divine design” alongside evolution. Divine design, sometimes called intelligent design, “doesn’t preach religion,” Buttars says. “The only people who will be upset about this are atheists.” He has not yet introduced formal legislation.

**Kansas**—A three-member subcommittee of the Kansas State Board of Education has recommended that science education standards in Kansas include “strong criticism of evolution,” according to the Kansas City Star. According to the Star, students should be taught about “perceived flaws in the theory of evolution. The changes stop short of endorsing the idea of intelligent design … evolution is criticized for not adequately explaining the origin of life or the existence of DNA.” The full Board of Education is expected to vote on the recommendations this summer.

**Pennsylvania**—The Northwest Area School District Board of Education, at the request of several school board members, will soon begin to examine the possibility of including “intelligent design” in the science curriculum in the school district.

**Missouri**—Creationism legislation died at the end of the 2005 session of the Missouri House of Representatives. The bill provided that “All biology textbooks sold to the public schools of the state of Missouri shall have one or more chapters containing a critical analysis of origins. The chapters shall convey the distinction between data and testable theories of science and philosophical claims that are made in the name of science. Where topics are taught that may generate controversy, such as biological evolution, the curriculum should help students to understand the full range of scientific views that exist, why such topics may generate controversy, and how scientific discoveries can profoundly affect society.”

---

Source: The National Center for Science Education
Better Images...Faster Answers

Whole Organism Macro Fluorescence

From the leader in 3-D optics comes the world's first Macroscopic Fluorescence zoom system for high-resolution, whole organism imaging, the NEW Leica MacroFluo™.

In the past, capturing quality images of entire adult model organisms like mice, rats, zebrafish or stickleback fish was difficult due to their size. With the MacroFluo™ this is no longer the case as this fluorescence imaging system is capable of capturing extra large fields. Add a Leica DFC digital camera and realize the system's true potential by capturing multiple large field-of-view images in a stack. These images are automatically rendered into an amazing composite photo where all planes, from top to bottom, are in focus at the same time (i.e. Image Stacking or MultiFocus).

Achieve Better Images...for Faster Answers with the Leica MacroFluo™! Call 800-248-0123 today for a free consultation!

Intelligent Automation

Leica Microsystems Inc.
2345 Waugaweg Road
Bannockburn, IL 60015

Telephone (847) 405-0123 (800) 248-0123
Fax (847) 405-0164
In Canada call (800) 205-3422
www.stereomicroscopy.com
Sean Morrison

Keeping up with Sean Morrison is not for the faint-hearted. Morrison spun his high school science fair project into a biotech start-up even before enrolling at Dalhousie University in his native Halifax, Nova Scotia in 1986. He dropped out as a sophomore to carry the venture through a successful field trial, and then started over as a student in 1990. Morrison finished Dalhousie in 1991, earned his PhD at Stanford in 1996, and finished a post-doc at Caltech in 1999, before joining the faculty of the University of Michigan Medical School the same year. Morrison became an HHMI Investigator in 2000 and won a Presidential Early Career Award for Scientists in 2003.

Morrison’s science got off to an unlikely if fast start back in Halifax. His science fair project was a hydroponic plant growth system to crank out a difficult-to-grow symbiotic fungus that was known to sharply increase nutrient uptake in plants. The venture attracted immediate support from Dalhousie, which gave him lab space, and from Canadian government agencies, which gave him research grants. His hydroponically grown fungus amply demonstrated proof-of-principle in a field trial, Morrison recalls, but chaos in the financial markets dried up the venture capital pool at the critical moment, so he shut the whole thing down in 1990 and went back to school.

Being a teenage biotech entrepreneur was an amazing experience and a positive one, reflects Morrison.

Today Morrison’s Ann Arbor lab works with both hematopoietic and neural stem cells, using them as comparative model systems to get at conserved and divergent stem cell regulation mechanisms. His lab draws on his graduate student experience in the lab of Irv Weissman in blood-forming stem cells, and on his post-doc with David Anderson in neural stem cells. “Now at Michigan, we go back and forth, studying the extent to which mechanisms are conserved between stem cells in different tissues,” explains Morrison. “We use them both to focus on questions such as self-renewal. When you have two examples of how something works, you understand it a lot better.”

Morrison was the first to trace a neural stem cell genetic defect to Hirschsprung disease, a catastrophic impairment of intestinal motility.

“There is no other stem cell biology investigator in Sean’s age group nationally or internationally as original and productive as Sean,” says Stanford’s Ben Barres, citing Morrison’s early work on how neural crest stem cells give rise to different fates in different peripheral nervous system regions and how aging further narrows stem cell fates. Says Barres, “Sean’s identification of the novel protein BMI-1, and showing that it is necessary for stem cell self-renewal but not progenitor proliferation, may be the most important step forward in understanding stem cell biology of the decade.”

According to Leonard Zon at Children’s Hospital in Boston, “Sean has a different way of looking at data. He can take things apart—he understands the biochemistry and the molecular biology—but he also has the ability to look at data in the context of the whole cell, of how it moves, how it does its job, and what its decision-making strategies are.”

“Sean Morrison is definitely one of the stars of stem cell biology,” says Harvard Medical School’s George Daley. “He is able to reach across a spectrum of multiple adult stem cell types—blood and neural—to compare and contrast these different adult stem cell systems and find universal features. That’s part of the power.
of his analytic approach. I’m in awe of his productivity and the depth of his science.”

Morrison has not been content to sit in his lab while outsiders demonize stem cell research. He joined the ASCB’s Public Policy Committee two years ago and is also active with the International Society for Stem Cell Research, believing that the stem cell “controversy” has been overblown by certain interest groups whose political influence far outweighs their numbers.

“We think of stem cell research as a controversial area, but I think it’s really a small fraction of the population who thinks this is problematic,” says Morrison. “But this fraction is influential with the present Administration and has been able to create the impression that there are ethically-problematic issues that should delay research. The fact is that very few of the people who are knowledgeable about what’s really at stake agree. Even among the general public, a majority do not share that point of view. The vast majority of people think that this is really important and worth supporting and that goes for Democrats, Republicans, Catholics, non-Catholics, you name it. No one has ever given me a hard time about stem cells anywhere, even on Capitol Hill,” says Morrison.

“Sean has emerged as a compelling public spokesman for stem cell biology,” says Daley, who serves with Morrison on the ASCB Public Policy Committee. “He’s sort of quiet by nature so when Sean speaks up in a committee meeting, it behooves you to listen. He’s not the sort of person who speaks just to hear the sound of his own voice.”

ASCB Public Policy Chair Larry Goldstein echoes that assessment. “Sean is a rising star scientifically as well as on the policy side of the stem cell world. He is a young scientist who has embraced this responsibility and I really admire him for that.”

Morrison lives in Ann Arbor with his wife, Theodora Ross, an MD/PhD who is a cancer clinician and researcher, and his two daughters by a previous marriage, Alix, 9, and Annika, 7. Both girls are aspiring equestrians. Morrison himself, until recently, cultivated his Canadian roots by playing in Ann Arbor’s amateur men’s hockey league. “But I had to retire,” Morrison reports wistfully. “I was just getting too old and too slow and I didn’t want to embarrass my kids.” He now characterizes his athletic self as “someone who aspires to play golf again someday.”

“Dear Labby,

I am a third-year post-doc in a lab that has been very productive and in which I feel valued and happy. However, over the past year the lab has transitioned increasingly from developmental biology to more work in human embryonic cells. I am not opposed to embryonic stem cell research because intellectually I believe that the potential benefits outweigh the costs. However, I find, somewhat to my own surprise, that I feel uncomfortable participating in this research personally. Is it logically and ethically consistent to support this research but not want to conduct it myself? How can I explain my feelings to my PI? Do you see a continuing place for me in this lab?

—Feeling Caught

Dear Caught,

You are not accountable to anyone else’s feelings about what is or is not “logically or ethically consistent”—your own feelings are those that you must respect. Your challenge is to accept your own instincts as valid and to find a resolution that enables you to continue to be productive scientifically.

Discuss the issue with your PI. Even if he or she is a passionate advocate for human embryonic stem cell research, it is very likely that s/he will respect your feelings that you do not want to participate in this research. The best outcome is if there are other promising projects in the lab to which you could be reassigned.

In general, independent of the nature of the controversy, it is the PI’s responsibility to determine the goals of the lab. If your PI’s plans are not within your comfort range, ask your PI to help and support your search for another lab.

—Labby

“Dear Labby

I am a third-year post-doc in a lab that has been very productive and in which I feel valued and happy. However, over the past year the lab has transitioned increasingly from developmental biology to more work in human embryonic cells. I am not opposed to embryonic stem cell research because intellectually I believe that the potential benefits outweigh the costs. However, I find, somewhat to my own surprise, that I feel uncomfortable participating in this research personally. Is it logically and ethically consistent to support this research but not want to conduct it myself? How can I explain my feelings to my PI? Do you see a continuing place for me in this lab?

—Feeling Caught

Dear Caught,

You are not accountable to anyone else’s feelings about what is or is not “logically or ethically consistent”—your own feelings are those that you must respect. Your challenge is to accept your own instincts as valid and to find a resolution that enables you to continue to be productive scientifically.

Discuss the issue with your PI. Even if he or she is a passionate advocate for human embryonic stem cell research, it is very likely that s/he will respect your feelings that you do not want to participate in this research. The best outcome is if there are other promising projects in the lab to which you could be reassigned.

In general, independent of the nature of the controversy, it is the PI’s responsibility to determine the goals of the lab. If your PI’s plans are not within your comfort range, ask your PI to help and support your search for another lab.

—Labby

The Society will provide up to $1,500 in total support for each of up to three Concurrent Symposia. Go to www.ascb.org to apply.
The Organization of the Core Proteins of the Yeast Spindle Pole Body
Eric G.D. Muller, Brian E. Snyderman, Isabella Novik, Dale W. Hailey, Daniel R. Gestaut, Christine A. Niemann, Eileen T. O’Toole, Tom H. Giddings, Jr., Bryan A. Sundin, and Trisha N. Davis

To better define the structure of the spindle pole body (SPB), the Saccharomyces cerevisiae microtubule organizing center, the authors used an elegantly designed and comprehensive FRET-based approach and analyzed 41 yeast strains expressing unique pairwise combinations of CFP- and YFP- fusions to the N- and C-termini of five core SPB proteins. They define a new, more readily measured and reliable FRET parameter—FRETR = fluorescence intensity in the FRET channel/total spillover from FRET partners—and used it to define the positional relationships between SPB proteins (N- and C- termini). Their relative spatial arrangements, constrained by 14 distinct FRET relationships, were solved using Euclidian geometry. This information was integrated into dimensions previously determined by electron-microscopy and stoichiometries obtained based on the relative intensity of individual YFP-fusions to derive a three-dimensional model of the SPB.

Long-term Self-renewal of Postnatal Muscle-derived Stem Cells
B.M. Deasy, B.M. Gharaiheb, J.B. Pollett, M.M. Jones, M.A. Lucas, Y. Kanda, and J. Huard

Pluripotency is a hallmark of stem cells; but equally important is their capacity for self-renewal, which is required to be able to expand rare adult stem cell populations for potential clinical use. Embryonic stem cells can retain their pluripotency for up to 250 population divisions (PDs); however, nonembryonic stem cells are considerably less robust, typically limiting their utility. Deasy et al. show that muscle-derived stem cells (MDSCs) isolated from postnatal mice can be maintained in culture for ~200 PD, generating sufficient cells for multiple clinical applications. The phenotypic properties of these expanded MDSCs are unchanged. Importantly, they retain their myogenic potential in vitro and their ability to regenerate muscle after transplantation into mdx mice, which model Duchenne muscular dystrophy. Eventually, after >250 PD, although they show no signs of senescence, the MDSCs begin to exhibit transformed phenotypes that would prohibit their clinical utility.

Structural and Functional Dissection of the Abp1 ADFH Actin-binding Domain Reveals Versatile In Vivo Adapter Functions
Omar Quintero-Monzon, Avital A. Rodal, Boris Strokopytov, Steven C. Almo, and Bruce L. Goode

Abp1—a conserved, multidomain protein—regulates the Arp2/3 complex and links proteins involved in endocytosis to the actin cytoskeleton in Saccharomyces cerevisiae. Its ADFH (actin depolymerizing factor homology) domain is shared between two other families: the ADF/cofilins, which bind actin monomers and filaments and promote filament severing and depolymerization, and the twinfilins, which sequester actin monomers. Comparing their structure of Abp1 ADFH with those of ADF/cofilin and twinfilin revealed significant similarities and important differences that explain their differential interactions with actin and why ADF/cofilin supports actin filament disassembly while Abp1 promotes assembly. Strikingly, the mutant abp1-5 that corresponds to a cofilin mutant defective in severing binds actin but cannot activate the Arp2/3 complex, revealing a new function for the ADFH domain. Other abp1 mutants differentially affect its ability to complement mutations in sac6, sla1, and sla2, suggesting that Abp1 plays distinct cellular roles as an adaptor depending on its partners.

Pushing Forces Drive the Cometlike Motility of Microtubule Arrays in Dictyostelium
Daniela A. Brito, Joshua Strauss, Valentin Magidson, Irina Tikhonenko, Alexey Khodjakov, and Michael P. Koonce

In interphase cells, microtubule (MT) minus ends are clustered at the center, while plus ends extend in a radial fashion toward the periphery. What forces maintain the central position of this MT array? Upon disruption of dynein motor activity, the MT array becomes highly motile, (appearing like a comet tail), suggesting that pulling forces generated by cortically anchored dynein might be involved. However, when the trailing array of MTs is severed with a laser microbeam, movement stops, indicating a pushing activity. MT array motility was also significantly decreased by disruption of the cortical actin network with latrunculin A (LatA). In control cells, LatA treatment reduced the lateral motions of the centrosome, but had no obvious effect on the activity of the MT-based motors. Together these data suggest that positioning of the interphase MT array requires a balance of pushing (kinesinlike) and pulling (dyneinlike) forces generated by motors anchored in the actin-rich cell cortex.
In 2004, PNAS featured groundbreaking articles by authors from 70 countries

You are not required to submit your paper through an Academy member; just submit it to the editorial office and an appropriate member will be selected for you.

ALBANIA  ALGERIA  ARGENTINA  AUSTRALIA  AUSTRIA  BANGLADESH  BELGIUM  BRAZIL  CANADA  CHILE  CHINA  COLOMBIA  CROATIA  CZECH REPUBLIC  DENMARK  ENGLAND  FINLAND  FRANCE  GERMANY  GREECE  HONG KONG  HUNGARY  INDIA  INDONESIA  IRELAND  ISRAEL  ITALY  JAPAN  KAZAKHSTAN  KENYA  KUWAIT  LEBANON  MALAYSIA  MEXICO  MOLDOVA  NEPAL  NETHERLANDS  NEW ZEALAND  NORWAY  OMAN  PALAU  PANAMA  PAPUA NEW GUINEA  PHILIPPINES  POLAND  PORTUGAL  PUERTO RICO  ROMANIA  RUSSIA  SCOTLAND  SINGAPORE  SLOVENIA  SOMALIA  SOUTH AFRICA  SOUTH KOREA  SPAIN  SWAZILAND  SWEDEN  SWITZERLAND  SYRIA  TAIWAN  TANZANIA  THAILAND  TUNISIA  TURKEY  UNITED ARAB EMIRATES  UNITED STATES  URUGUAY  VIETNAM  WALES

PNAS Proceedings of the National Academy of Sciences of the United States of America
Call for BioClips. Enter the “Cinema of the Cell” contest during the ELSO Meeting in Dresden, Germany, September 3-7 (see http://www.elso.org). BioClips will be displayed at http://bioclips.com. Thirty-six BioClips are already on the site.

2005 NIH Director’s Pioneer Award. A key component of the NIH Roadmap for Medical Research, the Award supports scientists of exceptional creativity who propose pioneering approaches to major challenges in biomedical research. http://nihroadmap.nih.gov/pioneer/.


NIH Grants.

Call for Entries
Celldance Festival 2005
ASCB’s First Annual Cell Biology Film Contest
First prize: $500
Entry deadline: September 30, 2005

To open the eyes of the world to the best in visually stunning cell videos that highlight cell biology, the ASCB Public Information Committee (PIC) announces the “Celldance Festival 2005,” the ASCB’s first annual cell biology film contest.

First prize is $500 cash and a free 2005 ASCB Annual Meeting registration for the winner. Additional runners up will receive smaller cash prizes. A Celldance Festival 2005 winners’ reel will be posted for free, open-access downloading at www.ascb.org and promoted for free use in education, media outreach and other noncommercial use. Winning entries will be deposited in the new ASCB Image & Video Library. Entries can be submitted for publication in the ASCB journal, Cell Biology Education.

What: Entries can be descriptive or experimental, newly-created video or classic 16-mm films transferred to video, animations, cartoons, or dynamic sequences from electron microscopy.

Who: The contest is open to ASCB members and ASCB member applicants. Each prize will be given to a single winner.

When: Entry deadline is September 30, 2005. Winners will be notified in advance and prizes awarded this December at the ASCB 2005 Annual Meeting in San Francisco.

How: Entries must be submitted online as described on the Film Contest web page, and must be in QuickTime (.mov) or Microsoft Audio Video Interleaved (.avi) formats. Files can be no larger than 50 megabytes. To enter, or for technical advice, go to https://www.ascb.org/ascbsec/movie/.

Executive Director
The American Society for Cell Biology

The American Society for Cell Biology (ASCB) seeks an Executive Director. The Society brings the varied facets of cell biology together, promoting and developing the field of cell biology. It sponsors scholarly meetings and seminars, publishes research, has a strong online presence, and offers development opportunities for young investigators. ASCB also pursues a very active public policy agenda. The position requires candidates with demonstrated success in managing organizations of comparable purpose, preferably non-profit membership associations with a scientific or educational mission. The ideal candidate will have an appreciation for science and be able to establish a comfort level with scientific terminology. In addition, the next Executive Director should be an effective communicator and a talented fundraiser. Experience working with Congress and federal agencies is preferred.

Direct all inquiries and applications to: Jackie Mildner, Isaacscon Miller, email: 3040@imsearch.com. Please send electronically.

ASCB is an Affirmative Action/Equal Opportunity Employer.
FEI’s Tools for Nanotech deliver high resolution 3D imaging and analysis for cell biology:

- 3D imaging of cells and cell compartments
- Imaging of protein molecules
- High resolution protein localization
- Protein-protein interaction analysis

Our Quanta™ Series is the ultimate biological SEM for imaging cells and tissues under hydrated conditions, without requiring additional preparation. Quanta 3D DualBeam™ SEM/FIB enables precise in situ sectioning for cross-sectional examination or TEM sample preparation without compression or knifemark artifacts.

Examine the ultrastructure of cells and cell organelles, localize proteins and molecular machines, and image tissue sections and viruses in high resolution using FEI’s Tecnai™ TEM Series. Capture 3D spatial organization using Xplore3D™ automated electron tomography, reconstruction, and visualization software.

At FEI, experience, leadership and innovation are guided by our commitment to collaborate with customers so we can deliver the right Tools for Nanobiology, taking you where you need to go today and in the future.

---

We wish to thank: Dr. Phoebe Stewart, Vanderbilt University Medical Center, TN; 3D reconstruction of adenovirus; Dr. Sriman Subramanian, NIH, Bethesda, MD; cross section: yeast; A.J. Verkleij, University Utrecht, The Netherlands, TEM prep: heart tissue; Roger Weof, Research Brand, Beiersdorf AG, Hamburg, Germany, 3D cell reconstruction.

www.feico.com
sales@feico.com
MEETINGS Calendar

ASCB Annual Meetings

2005
San Francisco
December 10-14

2006
San Diego
December 9-13

2007
Washington, DC
December 1-5

2008
San Francisco
December 13-17

2009
San Diego
December 5-9

www.gapjunctionconference.org

Euroconference: NMR in Molecular Biology.
www.esf.org/conferences

September 1-5. Muensterschwarzach Abbey, Germany.
The Wilhelm Bernhard Workshop–19th International Workshop on the Cell Nucleus. www.zeb.biozentrum.uni-wuerzburg.de

September 17-22. Sant Feliu De Guixols, Spain.
Membrane Dynamics in Endocytosis.
www.esf.org/conferences

September 3-7. Dresden, Germany.
European Life Scientist Organization Annual Meeting.
www.elso.org

September 3-7. Sydney, Australia.

Strategies for Engineered Negligible Senescence (SENS), 2nd Conference. www.gen.cam.ac.uk/sens2

September 23-27. Nashville, TN.

September 25-29. Tomar, Portugal.
Second International Congress on Stress Responses in Biology and Medicine held by The Cell Stress Society International. www.cellstress.ucconn.edu

October 2-5. Edinburgh, UK.

Three-Dimensional Sensory and Motor Space. ESF-EMBO Symposia. www.esf.org/conferences

Probing the Molecular Basis of Protein Function through Chemistry. ESF-EMBO Symposia. www.esf.org/conferences

November 12-17. Sant Feliu De Guixols, Spain.
Comparative Genomics of Eukaryotic Microorganisms. ESF-EMBO Symposia. www.esf.org/conferences