Ruiz Bravo Appointed LAC Chair

ASCB President Harvey Lodish has announced the appointment of Norka Ruiz Bravo of the National Institutes of Health as Chair of the Society’s Local Arrangements Committee. Ruiz Bravo, an ASCB member since 1986, is Deputy Director for Extramural Research at the NIH.

The LAC organizes Annual Meeting events including the Social, the High School and Student Program, the ASCB-Zeiss Run and the Restaurant Guide.

NIH, NSF Receive Small Budget Increases

Just days after the fiscal year 2004 Federal budget was enacted four months late, President Bush sent his fiscal year 2005 budget to Congress early this month. It proposes modest budget increases for both the National Institutes of Health (NIH) and the National Science Foundation (NSF).

The President’s NIH budget request is for $28.757 billion, which is $729 million or 2.6% more than the budget approved by Congress for FY04. The NIH budget includes 10,393 Research Project Grants, an increase of 258 grants from the 2004 budget. $237 million of the budget is allocated to the NIH Roadmap initiatives. The budget includes the creation of a proposed Obesity Research Taskforce to coordinate and accelerate NIH-funded obesity research, with $22 million for expanded trans-NIH research in obesity and diabetes. The budget freezes stipends for graduate student and post-doctoral recipients of Ruth L. Kirschstein National Research Service Awards at FY2004 levels.
PRESIDENT’S COLUMN

Teaching is Good for Research

Few would argue with the premise that research is an important part of teaching, and that many of our greatest teachers have also been top researchers. Cell biology is an experimental science and we teach our students the experimental underpinnings of the key results and concepts of our field, often illustrating actual experimental data to establish a point. We incorporate the latest results and methods in our class lectures and problem sets; discussions on genomics, DNA “chip” microarray technology, and bioinformatics commonly interdigitate our lectures on cell-cell signaling pathways, protein traffic, and the cytoskeleton. In laboratory courses students learn how to carry out some of the newest experimental techniques. The point here is that in many, many ways, research informs our teaching of cell biology.

But what of the converse premise – that teaching is good for the development of one’s research program? First, I suggest that, by requiring one to master new and unfamiliar areas of biology, teaching naturally leads one into totally new areas of investigation and enhances one’s research program.

By requiring one to master new and unfamiliar areas of biology, teaching naturally leads one into totally new areas of investigation and enhances one’s research program.

We explicitly rejected the notion of setting up two classes of faculty citizens - one group based in research and the other in the university and doing all of the teaching.

The American Society for Cell Biology Off ices

Harvey Lodish

By requiring one to master new and unfamiliar areas of biology, teaching naturally leads one into totally new areas of investigation and enhances one’s research program.

Few would argue with the premise that research is an important part of teaching, and that many of our greatest teachers have also been top researchers. Cell biology is an experimental science and we teach our students the experimental underpinnings of the key results and concepts of our field, often illustrating actual experimental data to establish a point. We incorporate the latest results and methods in our class lectures and problem sets; discussions on genomics, DNA “chip” microarray technology, and bioinformatics commonly interdigitate our lectures on cell-cell signaling pathways, protein traffic, and the cytoskeleton. In laboratory courses students learn how to carry out some of the newest experimental techniques. The point here is that in many, many ways, research informs our teaching of cell biology.

But what of the converse premise – that teaching is good for the development of one’s research program? First, I suggest that, by requiring one to master new and unfamiliar areas of biology, teaching naturally leads one into totally new areas of investigation and enhances one’s research program.

By requiring one to master new and unfamiliar areas of biology, teaching naturally leads one into totally new areas of investigation and enhances one’s research program.

We explicitly rejected the notion of setting up two classes of faculty citizens - one group based in research and the other in the university and doing all of the teaching.

The American Society for Cell Biology Off ices

By requiring one to master new and unfamiliar areas of biology, teaching naturally leads one into totally new areas of investigation and enhances one’s research program.

Few would argue with the premise that research is an important part of teaching, and that many of our greatest teachers have also been top researchers. Cell biology is an experimental science and we teach our students the experimental underpinnings of the key results and concepts of our field, often illustrating actual experimental data to establish a point. We incorporate the latest results and methods in our class lectures and problem sets; discussions on genomics, DNA “chip” microarray technology, and bioinformatics commonly interdigitate our lectures on cell-cell signaling pathways, protein traffic, and the cytoskeleton. In laboratory courses students learn how to carry out some of the newest experimental techniques. The point here is that in many, many ways, research informs our teaching of cell biology.

But what of the converse premise – that teaching is good for the development of one’s research program? First, I suggest that, by requiring one to master new and unfamiliar areas of biology, teaching naturally leads one into totally new areas of investigation and enhances one’s research program.

By requiring one to master new and unfamiliar areas of biology, teaching naturally leads one into totally new areas of investigation and enhances one’s research program.

We explicitly rejected the notion of setting up two classes of faculty citizens - one group based in research and the other in the university and doing all of the teaching.

The American Society for Cell Biology Off ices

By requiring one to master new and unfamiliar areas of biology, teaching naturally leads one into totally new areas of investigation and enhances one’s research program.

Few would argue with the premise that research is an important part of teaching, and that many of our greatest teachers have also been top researchers. Cell biology is an experimental science and we teach our students the experimental underpinnings of the key results and concepts of our field, often illustrating actual experimental data to establish a point. We incorporate the latest results and methods in our class lectures and problem sets; discussions on genomics, DNA “chip” microarray technology, and bioinformatics commonly interdigitate our lectures on cell-cell signaling pathways, protein traffic, and the cytoskeleton. In laboratory courses students learn how to carry out some of the newest experimental techniques. The point here is that in many, many ways, research informs our teaching of cell biology.

But what of the converse premise – that teaching is good for the development of one’s research program? First, I suggest that, by requiring one to master new and unfamiliar areas of biology, teaching naturally leads one into totally new areas of investigation and enhances one’s research program.

By requiring one to master new and unfamiliar areas of biology, teaching naturally leads one into totally new areas of investigation and enhances one’s research program.

We explicitly rejected the notion of setting up two classes of faculty citizens - one group based in research and the other in the university and doing all of the teaching.

The American Society for Cell Biology Off ices

By requiring one to master new and unfamiliar areas of biology, teaching naturally leads one into totally new areas of investigation and enhances one’s research program.

Few would argue with the premise that research is an important part of teaching, and that many of our greatest teachers have also been top researchers. Cell biology is an experimental science and we teach our students the experimental underpinnings of the key results and concepts of our field, often illustrating actual experimental data to establish a point. We incorporate the latest results and methods in our class lectures and problem sets; discussions on genomics, DNA “chip” microarray technology, and bioinformatics commonly interdigitate our lectures on cell-cell signaling pathways, protein traffic, and the cytoskeleton. In laboratory courses students learn how to carry out some of the newest experimental techniques. The point here is that in many, many ways, research informs our teaching of cell biology.

But what of the converse premise – that teaching is good for the development of one’s research program? First, I suggest that, by requiring one to master new and unfamiliar areas of biology, teaching naturally leads one into totally new areas of investigation and enhances one’s research program.

By requiring one to master new and unfamiliar areas of biology, teaching naturally leads one into totally new areas of investigation and enhances one’s research program.

We explicitly rejected the notion of setting up two classes of faculty citizens - one group based in research and the other in the university and doing all of the teaching.

The American Society for Cell Biology Off ices

By requiring one to master new and unfamiliar areas of biology, teaching naturally leads one into totally new areas of investigation and enhances one’s research program.

Few would argue with the premise that research is an important part of teaching, and that many of our greatest teachers have also been top researchers. Cell biology is an experimental science and we teach our students the experimental underpinnings of the key results and concepts of our field, often illustrating actual experimental data to establish a point. We incorporate the latest results and methods in our class lectures and problem sets; discussions on genomics, DNA “chip” microarray technology, and bioinformatics commonly interdigitate our lectures on cell-cell signaling pathways, protein traffic, and the cytoskeleton. In laboratory courses students learn how to carry out some of the newest experimental techniques. The point here is that in many, many ways, research informs our teaching of cell biology.

But what of the converse premise – that teaching is good for the development of one’s research program? First, I suggest that, by requiring one to master new and unfamiliar areas of biology, teaching naturally leads one into totally new areas of investigation and enhances one’s research program.

By requiring one to master new and unfamiliar areas of biology, teaching naturally leads one into totally new areas of investigation and enhances one’s research program.

We explicitly rejected the notion of setting up two classes of faculty citizens - one group based in research and the other in the university and doing all of the teaching.
Luria continuously emphasized the importance of exposing beginning undergraduate students to top researchers who themselves are excellent teachers. In 1980, David Baltimore was establishing the privately-endowed Whitehead Institute and asked me to become a Founding Member. One of the key issues was the relationship of Whitehead to MIT, where David and I were faculty members. David insisted, with the full support of all of the founding members, that Whitehead faculty be full members of the MIT Biology Department. Despite the fact that our salaries were to come from the Whitehead Institute, all Whitehead faculty were to teach as much as “regular” biology faculty. That is, we explicitly rejected the notion of setting up two classes of faculty citizens – one group based in what is primarily a research institute doing minimal teaching, and the other in the university and doing all of the teaching. First and foremost we felt that such disparities would create frictions that would make collaborations and interactions among research groups in the different divisions difficult and awkward. Additionally, we realized that our proposed relationship would give Whitehead faculty access to MIT graduate and undergraduate students, and without question the presence of vibrant groups of these students in our labs has contributed enormously to our research.

In making this organizational decision, we were following a path first enunciated by Salvador Luria (1969 Nobel Laureate). Salva continuously emphasized the importance of exposing beginning undergraduate students to top researchers who themselves are excellent teachers. For many years Salva taught the Introductory Biology course at MIT, and this tradition continues with many Whitehead faculty. Currently Eric Lander and Bob Weinberg co-teach this course. This is in the great tradition of the American Research University – perhaps the United States’ major contribution to post-secondary education – in which research and teaching are inextricably linked.

Thus I am troubled by the fact that faculty at most medical schools in the United States do little or no teaching, especially at the undergraduate level, even when many are among the most inspiring and creative lecturers. Many who teach give only a few lectures and only in their area of specialty. As example, at a leading Boston medical school, a department head tried to encourage his faculty to teach a particularly needed undergraduate course, and had no takers. Similarly, when I was on the advisory board of a leading university research department in Germany, I noted that they had little difficulty hiring exceptional young scien-

MicroTime Series

Time-resolved Laser Fluorescence Microscopes

- Integrated laser coupling module
- Wavelengths from 375 to 900 nm
- Multiple detector options
- Standard or inverse microscope base
- Spatial resolution of less than 0.5 μm

PicoQuant GmbH
Rudower Chaussee 29
12489 Berlin, Germany
Tel. +49(0)30/6392 6560
Fax. +49(0)30/6392 6591
photolab@picquant.de
http://www.picoquant.com

Visit our:
10th Workshop on Single Molecule Detection: September 22-24, 2004
2nd European Course on Fluorescence Spectroscopy: End of October, 2004

I am troubled by the fact that faculty at most medical schools in the United States do little or no teaching, especially at the undergraduate level, even when many are among the most inspiring and creative lecturers.
Faculty members will, over time, be compromised without the constant input of new ideas and concepts that can come from teaching.

Standing in front of a group of students and presenting complex materials simply and concisely is a skill that can help one give the fantastic research lecture that lands a top job.

As example, for many years MIT has had a program whereby postdocs organize and teach a seminar course for advanced undergraduates; responses from teachers and students alike have been excellent and selection to teach these courses is highly competitive.

Once you have the faculty job, teach. If you do not have to teach, volunteer to organize a seminar course in a field near but not part of your own. Reading and criticizing papers in a field not one’s own, as part of a seminar course, is a great way to learn a new set of technologies or concepts. Or volunteer to teach part of a core graduate course in your department or develop and co-teach a new course with a colleague in a nearby field. Among other benefits, you may find common interests for collaborations and also get exposure to students who may decide to work with you.

Thus teaching can inform research as much as research can inform teaching. Additionally, I firmly believe that each of us has benefited from inspiring teachers and thus that each of us has acquired the obligation to teach at whatever level we can in order to train and inspire the generations of scientists who will follow us.

As always, comments from you, the readers, are welcome.

Comments should be directed to president@ascb.org.
The American Society for Cell Biology
Call for Award Nominations

<table>
<thead>
<tr>
<th>Award</th>
<th>Who is Eligible:</th>
<th>How to Apply:</th>
<th>Award:</th>
<th>Deadline:</th>
</tr>
</thead>
<tbody>
<tr>
<td>The 24th Annual E.B. Wilson Medal</td>
<td>An individual who has demonstrated significant and far-reaching contributions to cell biology. The primary nominator must be a member of the ASCB but the candidate need not be. The E.B. Wilson Medal is the ASCB's highest award for science.</td>
<td>Provide a letter of nomination, CV of the candidate, a maximum of three letters of support.</td>
<td>The winner gives the E.B. Wilson Lecture at the 44th ASCB Annual Meeting, and receives the E.B. Wilson Medal. Expenses to attend the Annual Meeting are paid.</td>
<td>March 31</td>
</tr>
<tr>
<td>The 19th Annual WICB Career Recognition Award</td>
<td>The Junior Award is for a woman in an early stage of her career (assistant professor or equivalent) who has made exceptional scientific contributions to cell biology and exhibits the potential for continuing a high level of scientific endeavor while fostering the career development of young scientists. The Senior Award is for a woman or man in a later career stage (full professor or equivalent) whose outstanding scientific achievements are coupled with a long-standing record of support for women in science and mentorship of young scientists.</td>
<td>For the Senior Award, provide a letter of nomination, CV of the candidate, a maximum of three letters of support.</td>
<td>The winners are presented an honorarium and plaque at the 44th ASCB Annual Meeting. Expenses to attend the Annual Meeting are paid.</td>
<td>March 31</td>
</tr>
<tr>
<td>The 11th Annual E.E. Just Lectureship</td>
<td>A minority scientist who has demonstrated outstanding scientific achievement. The primary nominator must be a member of the ASCB but the candidate need not be.</td>
<td>Provide a nomination letter with a description of the nominee’s scientific achievement and mentoring support of underrepresented minority students and scientists.</td>
<td>The winner gives the E.E. Just Lecture at the 44th ASCB Annual Meeting, and receives a plaque. Expenses to attend the Annual Meeting are paid.</td>
<td>March 31</td>
</tr>
<tr>
<td>The 4th Annual Norton B. Gilula Memorial Award</td>
<td>An outstanding graduate or undergraduate student who has excelled in research.</td>
<td>The student or advisor should submit a one-page research statement, a list of publications, a copy of the abstract submitted to the current year’s Annual Meeting and the advisor’s letter of recommendation. Duplicate applications from graduate students may be submitted for the Gilula and Bernfield Memorial Awards.</td>
<td>The winner is presented a plaque. Expenses to attend the Annual Meeting are paid.</td>
<td>August 1</td>
</tr>
<tr>
<td>The 11th Annual ASCB Public Service Award</td>
<td>An individual who has demonstrated outstanding national leadership in support of biomedical research. Any ASCB member may submit a nomination. The award winner may but need not be a scientist.</td>
<td>Provide a letter of nomination with a description of the nominee’s advocacy for and promotion of scientific research.</td>
<td>The winner gives the Public Service Award Lecture at the 44th ASCB Annual Meeting and receives a certificate. Expenses to attend the Annual Meeting are paid.</td>
<td>March 31</td>
</tr>
<tr>
<td>The 7th Annual Bruce Alberts Education Award</td>
<td>An individual who has demonstrated innovative and sustained contributions to science education with particular emphasis on the local, regional and/or national impact of the nominee’s activities. The primary nominator must be a member of the ASCB but the candidate and support letter authors need not be.</td>
<td>Provide a letter of nomination, letters of support and CV.</td>
<td>The winner receives an award statue and gives the Promega Lecture at the 44th ASCB Annual Meeting. Expenses to attend the Annual Meeting are paid.</td>
<td>March 31</td>
</tr>
<tr>
<td>The 6th Annual ASCB-Promega Early Career Life Scientist Award</td>
<td>An individual who has received a doctorate since 1992 and has served as an independent investigator for no more than 7 years. The primary nominator must be a member of the ASCB but the candidate and support letter authors need not be.</td>
<td>Provide the candidate’s CV, a brief research statement and a nominating letter plus no more than three letters of support, at least one of which must come from outside the candidate’s current institution.</td>
<td>The winner receives an award statue and gives the Promega Lecture at the 44th ASCB Annual Meeting. Expenses to attend the Annual Meeting are paid.</td>
<td>March 31</td>
</tr>
<tr>
<td>The 4th Annual Merton Bernfield Memorial Award</td>
<td>An outstanding graduate student or postdoctoral fellow who has excelled in research.</td>
<td>The student or post-doc or their advisor should submit a one-page research statement, a list of publications, a copy of the abstract submitted to the current year’s Annual Meeting, and the advisor’s letter of recommendation. Post-docs may also submit the recommendation of their graduate student advisor. Duplicate applications from graduate students may be submitted for the Gilula and Bernfield Memorial Awards.</td>
<td>The winner speaks in a Minisymposium at the 44th ASCB Annual Meeting and receives an honorarium. Expenses to attend the Annual Meeting are paid.</td>
<td>August 1</td>
</tr>
<tr>
<td>The 13th Annual MBC Paper of the Year Award</td>
<td>A student or post-doc first author who published research in Molecular Biology of the Cell from June 2003 through May 2004.</td>
<td>Submit your best work to MBC. The best paper is determined by MBC Associate Editors. All papers are considered; no additional application or nomination is required or invited.</td>
<td>The winner speaks in a Minisymposium at the 44th Annual Meeting. Expenses to attend the Annual Meeting are paid.</td>
<td>June 18</td>
</tr>
</tbody>
</table>

All applications and nominations may be submitted to the American Society for Cell Biology, 8120 Woodmont Avenue, Suite 750, Bethesda, MD 20814-2762; ascbinfo@ascb.org. For names of prior awardees or more information, see www.ascb.org or contact the ASCB at 301-347-9300, ascbinfo@ascb.org.
Minisymposia will be scheduled eight each afternoon, Sunday through Wednesday of the Annual Meeting. Four additional speakers for each minisymposium will be selected by the co-chairs from among abstract submissions.

Asymmetry in Development
- Joergen Knoblich, Research Institute of Molecular Pathology, Austria
- Geraldine Seydoux, The Johns Hopkins University

Autophagy and Organellar Turnover
- Beth Levine, University of Texas Southwestern Medical Center
- Yoshinori Ohsumi, National Institute for Basic Biology, Japan

Cargo Selection & Vesicle Formation
- Bruno Antonny, Institut de Pharmacologie Moléculaire & Cellulaire, France
- Linton Traub, University of Pittsburgh School of Medicine

Cell Biology of the Immune System
- Janice Blum, Indiana University
- Daniel Davis, Imperial College, London

Cell Biology of Intracellular Pathogens
- Michel Desjardins, University of Montreal
- Julie Theriot, Stanford University

Cell Biology of the Neuro
- Shelley Halpain, The Scripps Research Institute
- Josh Kaplan, Massachusetts General Hospital

Cell Cycle
- Susan Forsburg, The Salk Institute
- Thomas McGarry, Northwestern University

Cell Junctions & Polarity
- Andre Le Bivic, Developmental Biology Institute of Marseille, France
- Enrique Rodriguez-Boulan, Cornell University

Cell Migration & Adhesion
- Margaret Frame, Beatson Institute for Cancer Research
- Yu-li Wang, University of Massachusetts Medical School

Cell Regulation Through Extracellular Proteolysis
- Carl Blobe, Memorial Sloan-Kettering Cancer Center
- Marcos Millà, University of Pennsylvania

Chemical Biology
- Ben Cravatt, The Scripps Research Institute
- Barbara Imperiali, Massachusetts Institute of Technology

Chromatin Structure & Functional Organization of the Nucleus
- Shelley Berger, The Wistar Institute
- Jan Ellenberg, European Molecular Biology Laboratory

Control of Gene Expression
- Ronald Breaker, Yale University
- Steve Buratowski, Yale Medical School

Cytokinesis & Cellularization
- Ahna Skop, University of Wisconsin-Madison
- William Sullivan, University of California, Santa Cruz

Cytoskeletal Dynamics
- Arshad Desai, University of California, San Diego
- Laura Machesky, University of Birmingham, UK

Diverse Cellular Functions for Ubiquitin & Related Proteins
- Erica Johnson, Thomas Jefferson University
- Wes Sundquist, University of Utah

ECM, Biogenesis & Function
- Enid Neptune, The Johns Hopkins University
- Peter Varchenko, UMDNJ-RW Johnson Medical School

Establishment & Maintenance of Membrane Subdomains
- Rob Parton, University of Queensland, Australia
- Catherine Rabouille, UMC Utrecht, The Netherlands

Intermediate Filaments
- Robert Goldman, Northwestern University
- Harald Herrmann, German Cancer Research Center

Intraflagellar Transport in Human Health
- Martina Brueckner, Yale University
- Gregory Pazzou, University of Massachusetts Medical School

Microtubule-Based Motility
- David Burgess, Boston College
- Sarah Rice, Northwestern University

Molecular Microscopy in Living Cells
- Klaus Hahn, The Scripps Research Institute
- John Heuser, Washington University

The Nuclear Envelope: Structure & Transport Mechanisms
- Tom Misteli, The National Cancer Institute/NIH
- Mary Moore, Baylor College of Medicine

Proapoptotic Cell Biology
- Piet de Boer, Case Western Reserve University
- Kit Pogliano, University of California, San Diego

Protein Translocation Across Membranes
- Arthur Johnson, Texas A&M University
- Carla Koehler, University of California, Los Angeles

Secretory Organelles & Regulated Exocytosis
- Michael Marks, University of Pennsylvania
- Aaron Turkevitz, University of Chicago

Signal Transduction in Development
- David Greenstein, The Scripps Research Institute
- James Posakony, University of California, San Diego

Signal Transduction Networks
- Anton Bennett, Yale University
- Margaret Chou, University of Pennsylvania

Signaling in Cell Proliferation and Death
- Jean Wang, University of California, San Diego
- Jeff Wrana, Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto

Stem Cells
- Alejandro Sánchez Alvarado, University of Utah
- Sean Morrison, University of Michigan

Systems Biology: Theory & Practice
- Joseph Ecker, The Salk Institute
- Trey Ideker, University of California, San Diego

Thermal & Mechano-Sensation
- Monica Driscoll, Rutgers University
- Ardem Patapoutian, The Scripps Research Institute

To register, submit an abstract or for more information, contact the ASCB at (301) 347 9300. ascbinfo@ascb.org. www.ascb.org
How to Ensure that Your Abstract is Accepted

Did you know that abstracts for the ASCB Annual Meeting are reviewed? A group of about twenty cell biologists from the Bethesda/Baltimore area volunteer each year to work with the Program Committee to review each and every one of the ~3000 abstracts submitted. Why is this necessary? An abstract for the ASCB Annual Meeting is published in Molecular Biology of the Cell and can be referenced as a type of publication. Presentation of research in the form of a poster (and an abstract) carries some level of endorsement by the ASCB, even if we cannot judge the basis for the specific conclusions stated therein.

The guidelines for the Program Committee are relatively straightforward. First, the Committee tries to determine whether an abstract presents new findings. New findings can be experimental or theoretical—but specific results must be included. Each year we receive a few abstracts that state, “Our findings regarding X and Y will be presented.” Such an abstract will not be accepted—the results (experimental or calculated) must be stated in the abstract, similar to an abstract of a submitted manuscript. Of course, an author is free to include their latest data in the final poster presented at the meeting, but the conclusions of the abstract, submitted prior to the meeting, must be substantive.

The Program Committee also tries to ensure that our poster sessions are not used as a venue for commercial promotion. Commercial vendors provide essential products for cell biology research, and the Society provides an extensive exhibit floor and the “Exhibitor Showcases” explicitly for the purpose of enabling vendors to present the advantages of their products. The ASCB has many valued members who work in industry as researchers and/or vendors; occasionally abstracts from such members are difficult for the Committee to evaluate. The following examples are easy to judge: “We present here a comparison of ‘Superboy’® blotting method with the conventional method used” or, “We show that this new fluorescent product works better than another one.” These would not be accepted. More ambiguous would be an abstract that describes interesting results but then mentions that the work was done with a proprietary and copyrighted product, and co-authors included the company that made the special product (soon to be available for sale).

In 2003, the Program Committee flagged about 35 abstracts, each of which were carefully re-reviewed by senior ASCB members and staff. In the end, 28 were rejected based upon the guidelines above—and the authors were given another chance to resubmit a revised abstract for the late breaking abstract deadline. Abstracts rejected at the late breaking deadline did not have another opportunity for re-submission.

The goal of the ASCB Program Committee is to support all ASCB members—experimental and theoretical, working in both industry and academic environments, according to these concrete guidelines. If any member would like specific guidance or pre-review of their abstract prior to the normal submission deadlines to avoid any chance of disappointment, the Program Committee is happy to provide feedback to authors to avoid any possible pitfalls in abstract submission.

We thank ASCB member John Gagliardi from Rutgers University for suggesting inclusion of this piece in the ASCB Newsletter.
2004 Summer Meeting

Cytokinesis

July 22 - July 25
The University of Vermont

Organizer

Yu-li Wang, University of Massachusetts Medical School

Thursday, July 22

Keynote Speaker: Raymond Rappaport
Mount Desert Island Biological Laboratory

Friday, July 23

Contractile Ring Assembly & Constriction

Thomas D. Pollard, Yale University
Speakers: Issei Mabuchi, University of Texas
John Pringle, University of North Carolina

Membrane Dynamics in Cytokinesis

David R. Burgess, Boston College
Speakers: Fred Chang, Columbia University College of Physicians & Surgeons
John White, University of Wisconsin

Saturday, July 24

The Mitotic Spindle and Cytokinesis

Bruce Bowerman, University of Oregon
Speakers: Michael Glotzer, Research Institute of Molecular Pathology
Edward Salmon, University of North Carolina

Novel Aspects of Cytokinesis

Yu-li Wang, University of Massachusetts Medical School
Speakers: Dannel McCollum, University of Massachusetts Medical School
Douglas Robinson, Johns Hopkins University School of Medicine

Sunday, July 25

Functional Genomic and Non-Genomic Approaches

Christine M. Field, Harvard Medical School
Speakers: Kathy Gould, Vanderbilt University
Patrick Hussey, University of Durham, UK
James Spudich, Stanford University

Additional speakers will be selected from submitted abstracts.

Poster sessions are scheduled for Friday afternoon.

For more information, see www.ascb.org.
Current Budget Finally Approved

Last month Congress finally completed the Fiscal 2004 Federal budget. The FY04 Consolidated Appropriations bill contains seven of thirteen appropriations bills that make up each Federal budget, and includes funding for the National Institutes of Health (NIH) and the National Science Foundation (NSF). Passage comes four months after the Federal budget is expected to be passed by Congress and signed into law by the President.

The NIH portion is $28.028 billion, an increase of approximately $1 billion or 3.7% more than in 2003. The NSF budget is $5.7 billion, $300 million or 5.2% more than the 2003 NSF budget.

Completion of the 2004 budget was delayed in part because of what has become routine Congressional procrastination, but also due to serious differences about policy changes included in the bill. Policy is usually excluded from spending bills, but the Republican leadership in both the House of Representatives and the Senate used the spending bill to force passage of changes to food labeling, media ownership, school vouchers and overtime rules.

The bill also included more than 7,900 earmarks for individual local projects. The earmarks totaled almost $11 billion.

Bush Proposes Budget Freeze Next Year

President Bush announced in his State of the Union address last month that the 2005 budget would limit growth in discretionary spending to less than 4%. But when his budget was released at the beginning of this month, overall growth in non-defense, non-homeland security spending had been reduced to just .5%.

The additional cut is generally recognized to have been a result of pressure by the President’s own party to reduce spending and the size of the deficit.

With inflation currently around 2%, a .5% spending cap is, in effect, a cut in domestic spending. During President Bush’s

Current Budget Finally Approved

<table>
<thead>
<tr>
<th>Appropriations</th>
<th>FY 2003 Budget (dollars in thousands)</th>
<th>FY 2004 Budget (dollars in thousands)</th>
<th>President’s FY 2005 Request (dollars in thousands)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCI</td>
<td>$4,587,594</td>
<td>$4,735,973</td>
<td>$4,870,025</td>
</tr>
<tr>
<td>NHLBI</td>
<td>$2,791,922</td>
<td>$2,878,106</td>
<td>$2,963,953</td>
</tr>
<tr>
<td>NIDCR</td>
<td>$370,987</td>
<td>$383,048</td>
<td>$394,080</td>
</tr>
<tr>
<td>NIDDK</td>
<td>$1,721,083</td>
<td>$1,821,240</td>
<td>$1,876,196</td>
</tr>
<tr>
<td>NINDS</td>
<td>$1,455,090</td>
<td>$1,500,693</td>
<td>$1,545,623</td>
</tr>
<tr>
<td>NIAID</td>
<td>$3,702,696</td>
<td>$4,303,040</td>
<td>$4,425,507</td>
</tr>
<tr>
<td>NIGMS</td>
<td>$1,845,742</td>
<td>$1,904,777</td>
<td>$1,959,810</td>
</tr>
<tr>
<td>NICHD</td>
<td>$1,204,192</td>
<td>$1,241,845</td>
<td>$1,280,915</td>
</tr>
<tr>
<td>NEI</td>
<td>$632,268</td>
<td>$652,738</td>
<td>$671,578</td>
</tr>
<tr>
<td>NIEHS</td>
<td>$612,070</td>
<td>$631,063</td>
<td>$650,027</td>
</tr>
<tr>
<td>NIA</td>
<td>$992,907</td>
<td>$1,024,598</td>
<td>$1,056,666</td>
</tr>
<tr>
<td>NIAMS</td>
<td>$485,611</td>
<td>$500,908</td>
<td>$515,378</td>
</tr>
<tr>
<td>NIDCD</td>
<td>$370,075</td>
<td>$381,946</td>
<td>$393,507</td>
</tr>
<tr>
<td>NIMH</td>
<td>$1,339,283</td>
<td>$1,381,266</td>
<td>$1,420,609</td>
</tr>
<tr>
<td>NIDA</td>
<td>$964,945</td>
<td>$990,787</td>
<td>$1,019,060</td>
</tr>
<tr>
<td>NIAAA</td>
<td>$415,500</td>
<td>$428,425</td>
<td>$441,911</td>
</tr>
<tr>
<td>NINR</td>
<td>$130,495</td>
<td>$134,701</td>
<td>$139,198</td>
</tr>
<tr>
<td>NHGRI</td>
<td>$464,385</td>
<td>$478,828</td>
<td>$492,670</td>
</tr>
<tr>
<td>NIBIB</td>
<td>$279,943</td>
<td>$288,830</td>
<td>$297,647</td>
</tr>
<tr>
<td>NCRR</td>
<td>$1,138,558</td>
<td>$1,178,956</td>
<td>$1,094,141</td>
</tr>
<tr>
<td>NCCAM</td>
<td>$113,267</td>
<td>$116,942</td>
<td>$121,116</td>
</tr>
<tr>
<td>NCMHD</td>
<td>$185,661</td>
<td>$191,456</td>
<td>$196,780</td>
</tr>
<tr>
<td>FIC</td>
<td>$62,154</td>
<td>$65,344</td>
<td>$67,182</td>
</tr>
<tr>
<td>NLM</td>
<td>$297,845</td>
<td>$308,476</td>
<td>$325,146</td>
</tr>
<tr>
<td>OD</td>
<td>$285,894</td>
<td>$327,089</td>
<td>$359,645</td>
</tr>
<tr>
<td>Buildings/Facilities</td>
<td>$638,687</td>
<td>$98,972</td>
<td>$99,500</td>
</tr>
<tr>
<td>Type 1 Diabetes</td>
<td>$100,000</td>
<td>$150,000</td>
<td>$150,000</td>
</tr>
</tbody>
</table>

Bush Proposes Budget Freeze Next Year

President Bush announced in his State of the Union address last month that the 2005 budget would limit growth in discretionary spending to less than 4%. But when his budget was released at the beginning of this month, overall growth in non-defense, non-homeland security spending had been reduced to just .5%.

The additional cut is generally recognized to have been a result of pressure by the President’s own party to reduce spending and the size of the deficit.

With inflation currently around 2%, a .5% spending cap is, in effect, a cut in domestic spending. During President Bush’s
Completion of the 2004 budget was delayed in part because of what has become routine Congressional procrastination, but also due to serious differences about policy changes included in the bill.

In his State of the Union speech, the President told Congress that a spending limit of 4% would allow the current deficit to be reduced by half over the next five years. But the Center on Budget and Policy Priorities estimates that in order to make good on his promise — making current tax cuts permanent, maintaining the defense buildup and an increase in anti-terrorism spending while cutting the deficit in half in five years— $150 billion in cuts would have to be made to other discretionary spending programs. That would amount to twice the entire Veteran’s Administration budget, or twice the Education Department budget, or fourteen times the budget of the Environmental Protection Agency, or 15% cuts to all Federal programs except defense, homeland security, Social Security and Medicare.

Gordon to Lead Dems on Science Panel

Last month, Rep. Ralph Hall (TX) announced that he is leaving the Democratic Party to join the Republicans. Hall had previously served as Ranking Democrat on the House Science Committee. Following the change, the House Democratic Caucus named Tennessee Representative Bart Gordon as the new ranking Democrat on the Science Committee. Gordon represents the Sixth District of Tennessee and has been in Congress since 1984. He has served on the Science Committee since 1985.

Senate Calls NIH to Task on Conflict of Interest

Last month the Senate Appropriations Subcommittee on Health, Education & Labor, chaired by Senator Arlen Specter (R-PA), held a hearing on alleged conflict of interest by NIH employees. The allegations were first made public in a December 2003 investigative report published by the Los Angeles Times.

The Times claimed that some NIH scientists, including some institute directors, had been earning hundreds of thousands of dollars as consultants to drug companies that would benefit if their products were used in NIH clinical trials.

In July 2003, the House of Representatives Energy & Commerce Committee had expressed concern about NIH employees receiving monetary lecture awards.

In his testimony before the Senate Committee, NIH Director Elias Zerhouni addressed both issues. He told the Committee that in response to the concern of the House Committee, he had personally reviewed NIH ethics regulations and had announced the formation of a trans-NIH ethics advisory committee.

In response to the claims made by the Los Angeles Times, Zerhouni told the Committee that he had directed a review of all existing outside activities to make sure they did not violate current NIH regulations.
The review has not been completed, but Zerhouni assured the members of the Committee that initial indications were that no relationships between NIH employees and outside parties had led to patients being harmed or undue influence on grant applications or other decisions.

During the hearing, Zerhouni announced the formation of a Blue Ribbon Task Force to review NIH ethics practices, consider collaborations with non-government organizations and make recommendations to the NIH Director for policy reform within 90 days. The Task Force will be chaired by ASCB member Bruce Alberts, President of the National Academy of Sciences, and Norman Augustine, Chairman of Lockheed Martin’s executive committee. Zerhouni had also directed that the current system of implementing ethics regulations be restructured, and that a new NIH Ethics Advisory Committee review applications from NIH employees to receive compensation for outside activities.

Senator Specter and Senator Tom Harkin (D-IA), both strong supporters of the NIH, sharply questioned Zerhouni and other witnesses. Specter told the officials that even the perception of a conflict of interest is a major problem and that it is critical that the NIH address the allegations. “This Subcommittee is prepared to do it if you don’t,” warned Specter.

The budget for the NSF will grow slightly more than the NIH budget. The President has asked Congress for $5.745 billion for NSF, $167 million or 3% more than the budget approved for 2004. Under the Bush budget, the Biological Sciences Directorate at NSF receives $599.93 million, which is $13.04 million or 2.2% more than 2004. Stipends for Graduate Research Fellowships will increase from 5,000 stipends to 5,500, but each stipend will remain at $30,000. The biggest cuts are in NSF’s support for institutional collaboration, including the Math and Science Partnership. This was initiated as part of President Bush’s No Child Left Behind educational reform program, but has been funded at only $80 million, a $59.17 million or 42.5% reduction from 2004 funding. Under the program, scientists, mathematicians and engineers work with teachers to bring cutting edge scientific research into classrooms, improve math and science standards, provide training for teachers and reach out to underserved schools.

<table>
<thead>
<tr>
<th>Year</th>
<th>Success Rates</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>26%</td>
<td>23,819</td>
</tr>
<tr>
<td>1997</td>
<td>31%</td>
<td>24,220</td>
</tr>
<tr>
<td>1998</td>
<td>31%</td>
<td>24,154</td>
</tr>
<tr>
<td>1999</td>
<td>32%</td>
<td>25,407</td>
</tr>
<tr>
<td>2000</td>
<td>32%</td>
<td>27,295</td>
</tr>
<tr>
<td>2001</td>
<td>32%</td>
<td>28,369</td>
</tr>
<tr>
<td>2002</td>
<td>31%</td>
<td>30,069</td>
</tr>
<tr>
<td>2003</td>
<td>30%</td>
<td>34,700</td>
</tr>
<tr>
<td>2004</td>
<td>27%</td>
<td>37,341</td>
</tr>
<tr>
<td>2005</td>
<td>27%</td>
<td>38,073</td>
</tr>
</tbody>
</table>

The National Institutes of Health
Number of Grant Applications and Success Rates

February 2004
2004 Congressional Biomedical Research Caucus Briefings

March 17
Stanley Prusiner
University of California, San Francisco
Mad Cow Disease: Dealing with the Threat

April 21
David Greenberg
Children’s Hospital of Pittsburgh
Hepatitis A: Problem & the Solution

May 19
Ken Fujioka
The Scripps Research Institute
Dietary Supplements: Use & Abuse

June 9
Steven Goodman
The Johns Hopkins University
Predicting the Outcome of Cancer: New Approaches & New Complications

June 23
Christopher Johnson
University of Utah
The Digital Human

July 14
Linda Griffith
Massachusetts Institute of Technology
Body on a Chip: Early Steps Toward Tissue & Organ Regeneration

September 15
Hilary Blumberg
Yale University
The Brain in Bipolar/Manic Depressive Disease

September 29
Andrew Schwartz
University of Pittsburgh
Using Thought Waves to Animate Artificial Limbs

October 6
David Altshuler
Massachusetts General Hospital
Gene Banks & Human Welfare

The briefings of the Congressional Biomedical Research Caucus Briefings are sponsored by the Joint Steering Committee for Public Policy, a coalition of the American Society for Cell Biology, the Genetics Society of America, and the Society for Neuroscience.
Ensuring Diversity at the Podium

Every time I attend a conference, I take a tally: how many women speakers are there?

The overall percentage of women students and postdocs in cell biology approaches 50%. If the speakers are chosen from submitted abstracts presented by junior scientists, it is reasonable to expect this pool will be well represented in the abstracts, and this is generally the case.

However, if the speakers are invited faculty, the limiting factor is often whether the organizers thought to invite women. Overall, about 30% of the US faculty in biological sciences is female, approaching 40% for young faculty. Based on this pool, it is reasonable to expect that 30% to 40% of the invited faculty-level speakers at a conference should be women.

I tested this with abstract books from my shelf for three similar-sized meetings held since 2000 in which all the talks were from invited speakers. The percentage of women speakers was 18%, 30% and 36%, although women are well represented in all three conference disciplines. This may be typical: many organizers ensure a gender-balanced program, but there are still readily identifiable examples of those who do not.

The meeting with only 18% female speakers was organized by two men who work at the same institution doing similar sorts of work. The other meetings were each organized by a man and a woman from different institutions with different scientific approaches. I’m sure the organizers would be surprised to find a gender bias in their program. This absence of women seldom represents deliberate discrimination: it’s simply that women’s names do not come to mind as readily, to men or to women. This is exacerbated because two men with similar backgrounds are likely to think of the same subset of names.

The common excuse for gender-biased programs heard a few years ago was, “there aren’t any women in this field”. However, there are no longer many fields that are female-free, so this excuse has given way to another: “we asked a woman, and she couldn’t come”. Too often, only one woman is recognized as qualified. There are a few truly remarkable women who are now routinely on the radar screen, but many women doing good science still remain invisible compared to their male peer group. This matters, because the exposure on the podium can significantly affect careers by exposing the speaker to potential postdocs, collaborators, job opportunities, or prizes—and of course, further speaking opportunities.

Moreover, representation on the podium sends strong signals to the young investigators in the audience. A non-inclusive program implies a non-inclusive field that may drive young talent away.

An inclusive program is also an explicit criterion for financial support from most organizations that sponsor meetings. The NIH grants guide on conferences provides a good description.

So how is an organizer to ensure a diverse group of speakers?

1. **Invite co-organizers who look different than you do.** This is probably the
The most important way to break out of the box of inviting the “usual suspects”. As the examples cited above suggest, when the organizers are diverse in gender, ethnicity, geography, and sub-field, there tends to be a more balanced distribution of speakers.

2. **Actively seek suggestions for speakers.**

Don’t be shy about asking your colleagues. If an invitee can’t attend, seek his or her suggestions for alternate speakers. Make use of resources such as your professional society.

Contrary to some assumptions, the WICB Speaker’s Resource Bureau is not intended to be a list of speakers to invite; rather, it is a list of women in various fields who are happy to suggest other women in their discipline who would be appropriate. You can also contact the ASCB directly (ascbinfo@ascb.org) and indicate that you are seeking suggestions for women and/or under-represented minorities in a particular field. The Society will forward your request to the WICB or Minorities Affairs Committees. One of the responsibilities of the members of those committees is to respond to such requests from fellow ASCB members.

3. **Scan programs of past meetings in different, but related fields.**

The lines between disciplines are constantly changing. For example, it is now apparent that events in DNA replication affect chromosome segregation; therefore, organizers of a replication conference may benefit from examining abstracts from a mitosis meeting to identify crossover candidates.

4. **Avoid the usual suspects.**

Every summer, there is a cadre of major figures who travel a meeting circuit, so that it is likely that meeting attendees will hear the same speaker many times, who flies in just for the talk. Instead, ask a major figure to suggest a recently fledged postdoc from his/her lab. The senior professor will be pleased to give his/her offspring a chance, the newly minted faculty member will be thrilled with the invitation, and moreover is certain to stay for the entire meeting!

5. **Adjust your tentative program to insure diversity.**

Don’t wait for the people in the audience to tally the program. Do it yourself while there is still time for adjustments, and make sure you develop a representative program that includes many voices. Then listen to your conference sing!

—Susan L. Forsburg

I thank Anne Villeneuve and Judy Campbell for their helpful suggestions.

References:

2. “It is NIH policy that organizers of scientific meetings should make a concerted effort to achieve appropriate representation of women, racial/ethnic minorities, and persons with disabilities, and other individuals who have been traditionally underrepresented in science, in all NIH sponsored and/or supported scientific meetings. The plans to seek appropriate representation should be specified during selection of organizing committees, speakers, and other invited participants, such as session chairs and panel discussants.” http://grants.nih.gov/grants/guide/notice-files/NOT-OD-03-066.html
3. http://www.ascb.org/committees/wicb/list.html
ASCB PROFILE

Peter Agre

You never know how your teenager might react to your winning the Nobel Prize, so when Peter Agre’s youngest daughter, Anne, came home from ninth grade at Towson High after the big announcement last October, he was relieved when she reported, “all my friends think this is so cool.” Says Agre, “That may be the most amazing thing of all this Nobel stuff. . . . I will never be so cool again in my life.”

Agre, an MD who is a professor of biological chemistry at the Johns Hopkins University School of Medicine and a longtime ASCB member, won the 2003 chemistry prize for his discovery of aquaporins—water channels—which allow cells to rapidly move water in and out through the lipid membrane. Aquaporins are present in nearly all cells, but are most abundant (and most critical) in blood, the eyes, the lungs, and most of all, the kidneys. Agre shared the prize with Rod MacKinnon from Rockefeller University who was recognized for his structural studies of ion channels.

The importance of Agre’s aquaporins goes beyond kidney disease, says Vann Bennett, a long-time friend and colleague who is now at Duke: “These water channels are not just in animals or vertebrates or even metazoans. They are in plants and archaeobacteria. They deal with a fundamental issue that all life must solve—how to equilibrate water across an impermeable membrane.” Peter Agre has always been attracted to “big problems,” says Bennett, even if he discovered the first aquaporin protein while looking for something else entirely: “Peter was looking for the Rh factor originally because”—being a physician—“he knew how clinically important that would be in hematology. Instead, he found something else.”

That something else was not the Rh antigen protein but a plentiful 28 kilo-Dalton protein of unknown purpose that seemed, at first, to be a classic lab artifact, a distraction or a negative result. Agre recalls, “We knew that it was ubiquitous at some level in a variety of cell types, but we were astonished to find that it was one of the most abundant proteins in red blood cell membranes and in renal tubules. Now what do red blood cells and renal tubules have in common? Not much. So I asked a lot of physiologists and cell biologists for suggestions.” It was the late John Parker, a hematologist and membrane physiologist who had been Agre’s mentor during his clinical fellowship at UNC, who gave him the clue. “John said to me, ‘those are two of the most water permeable tissues in the body. Maybe it’s a water channel protein. People have been looking for them for decades.’” Agre tested the hypothesis by microinjecting purified cRNA of the mystery 28kDa protein into xenopus eggs. He remembers the dramatic results: “Frog eggs have to be one of the most impermeable cells on earth; but these swelled up until they burst like popcorn.”

Tom Pollard is now at Yale but was Hopkins Cell Biology Chair during Agre’s breakthrough experiments. He says that, “Peter was always an unconventional thinker, very creative in coming..."
He found something that many people would have thought was a dead end. Peter didn’t. Peter had the wit to think about what this protein might be doing. Lo and behold, he hit this goldmine of discovering the water channel.”

“Frog eggs have to be one the most impermeable cells on earth; but these swelled up until they burst like popcorn.”

As a Norwegian from Minnesota, Agre was an easy target for Garrison Keillor, who gently picked on Agre when “Prairie Home Companion” came to Baltimore after the Nobel announcement. Agre has been a longtime fan of Keillor’s Lake Wobegon tales of Norwegian bachelor farmers, tuna casseroles and Lutheran perplexity. “Those are my people,” Agre confirms. He was born in 1949 in Northfield, Minnesota, where his father taught chemistry at St. Olaf College; they moved to Minneapolis when his father joined the faculty at Augsburg, another small Lutheran school. Peter was fascinated by chemistry as a boy, but went through an anti-science period in high school when he was swept up in the cultural ferment of the mid-1960s and started his own underground newspaper. Nonetheless, he enrolled at Augsburg (“They had to take me. My dad was on the faculty”). By then, chemistry regained its sparkle and Agre graduated in 1970 with high honors and an offer of admission to Hopkins Medical School.

Medicine appealed to Agre as a way of addressing global health issues, he says. During a research internship with pharmacologist Pedro Cuatrecasas working on cholera toxin, Agre saw a career path. “You know that scene in ‘The Wizard of Oz’ where Dorothy wakes up and suddenly everything is in color? That’s what it was like for me in Pedro’s lab,” says Agre of this awakening. Nonetheless, once Agre had his MD from Hopkins, he decided to fulfill his medical residency requirements to become a licensed physician. “That way, if research didn’t work out, I could always make a living,” Agre recalls practically.

But research did work out, professionally and romantically. Mary Macgill Agre was working as a Johns Hopkins lab technician when they met. Several moves and four children later, Mary is a nursery school teacher near Baltimore. “Sometimes we compare notes on her three-year-old students and my 20- and 30-year-old students. There are a lot of similarities,” he reports.

During his clinical fellowship at UNC, Agre worked in Vann Bennett’s red cell membrane lab at Burroughs-Wellcome. When Bennett was offered a position back at Hopkins, Agre announced he was coming along. “Peter took a huge risk when he moved back to Johns Hopkins from North Carolina,” say Bennett. “He wrote a clinical investigator grant to cover his work in my lab, but he had no faculty appointment and no guarantees. Peter and Mary already had two children by then and this was when interest rates were 18%. It was a stressful time to be moving. But Peter always had two great qualities: curiosity, and a fighter pilot’s confidence in what he was doing.”

The Agre children seem to be enjoying their father’s great moment. Sara, who has a psychology degree from Colgate, is working as an administrator at the University of Virginia while contemplating grad school. Claire is studying landscape archi-
tecture at Harvard Graduate School of Design; Clarke is an undergraduate at Hampshire College, majoring in Japanese and filmmaking, and Anne, the ninth grader. The whole family, including Peter’s mother, went to Stockholm for the Nobel ceremony last December. Of the awards week, Agre can only say, “if it is possible to have too much fun, we had too much fun.”

Regarding the future, at least outside his Hopkins lab, Agre plans to become more active in public policy. He has just accepted an appointment to the influential Public Policy Committee of the ASCB, and he is dedicated to his work on the Human Rights section of the National Academy of Sciences where he has been the spearhead of a campaign to get legal representation for Texas bubonic plague researcher Thomas Butler against a raft of Federal charges stemming from alleged mishandling of plague samples.

Agre also plans this summer to take two of his children, two of his brothers, and his old friend and mentor Vann Bennett on the canoe trip of a lifetime, from Lake Winnipeg, Canada, northward down the Hayes River, all the way to Hudson Bay.

It will be an epic adventure, says Bennett, but it’s typical of the Agre scale of outdoor activity. “Peter is an avid cyclist. He rode his bicycle from Minneapolis to Baltimore more than once,” Bennett recalls. “We’ve been talking about this trip for years and we’re not getting any younger.” It seems like the perfect way to cap a Nobel year.

“Peter always had two great qualities: curiosity, and a fighter pilot’s confidence in what he was doing.”

Gifts
The ASCB is grateful to the following members who have recently given gifts to support Society activities:

David J. Asai
Frank M. Child
Karen A. Ketchum
Dmitry Kovalenko
Harvey F. Lodish
Shirley A. McCormack
MEMBERS IN THE NEWS

Mina Bissell of the Lawrence Berkeley National Lab, an ASCB member since 1973 and 1997 Society President, received the 2003 Brinker Award of the Susan G. Komen Breast Cancer Foundation.

Kerry Bloom of the University of North Carolina, an ASCB member since 1998, and Timothy Mitchison of Harvard Medical School, an ASCB member since 1983, have been elected to the Science Council of the Marine Biological Laboratory.

Michael Brown of the University of Texas Southwestern Medical Center, an ASCB member since 1980, will co-chair the newly-founded Texas Academy of Science, Engineering and Medicine.

Joaanne Chory of the Howard Hughes Medical Institute and the Salk Institute, an ASCB member since 1994, and Roel Nusse of HHMI and Stanford University, an ASCB member since 2000, are among the 2003 Scientific American 50: research, technology, business and policy leaders.

Joachim Frank of HHMI and the Wadsworth Center, an ASCB member since 1997, was named the Microscopy Society of America’s 2003 Distinguished Scientist in Biological Sciences.

Joseph Goldstein of HHMI and the University of Texas Southwestern Medical Center, an ASCB member since 1980, was named Distinguished Scientist by the American Heart Association.

Sandra Masur of the Mount Sinai School of Medicine, an ASCB member since 1965, has been appointed Associate Dean for Faculty Development.

Richard Morimoto of Northwestern University, an ASCB member since 1997, and Virginia Zakian of Princeton University, an ASCB member since 1972, were appointed by HHS Secretary Tommy Thompson to the National Advisory General Medical Sciences Council.

George Pappas of the University of Illinois, an ASCB member since 1960 and 1975 Society President, received the Henry Gray Award from the American Association of Anatomists.

David Sabatini of the New York University School of Medicine, an ASCB member since 1967 and 1978 Society President, received the 2003 Grande Medaille D’Or from the French Academy of Sciences.

Samuel Silverstein of HHMI and Columbia University College of Physicians and Surgeons, an ASCB member since 1966, received the 2003 Mayor’s Award for Public Understanding of Science from New York City Mayor Michael Bloomberg.

James Townsel of Meharry Medical College, an ASCB member since 2001, received the 2003 Education Award from the Association of Neuroscience Departments and Programs.

Roger Tsien of the University of California, San Diego, an ASCB member since 1987, and Robert Weinberg of the Whitehead Institute for Biomedical Research, an ASCB member since 1993, will share the 2004 Wolf Foundation Prize in Medicine.

Bert Vogelstein of HHMI and the Johns Hopkins University, an ASCB member since 1999, won the 2003 Johns Scott Award from the City Trusts of the City of Philadelphia.
GRANTS & OPPORTUNITIES

NIAID Fellowships. The NIH National Institute of Allergy and Infectious Diseases solicits applications from biodefense training and development researchers of prevention, detection, diagnosis and treatment of diseases caused by potential bioterrorism agents. Grants, fellowships and career development awards. See www.niaid.nih.gov/biodefense/research/funding.htm.

Job Opportunities

Cytoskeleton Inc. is seeking highly motivated and creative scientists to fill prominent positions in all departments.

Positions require a Ph.D. which incorporates 3 years experience in the position applied for. The purpose of the new laboratory positions are to develop novel cell biology research tools that will have a significant impact on the future of cytoskeletal research and the development of Cytoskeleton Inc. Publishing and travelling to scientific meetings are encouraged.

Scientific Writing and Web design
Creates technical literature and graphics concerning Cytoskeleton’s products. Also creates catalogs, product profiles and flyers, and maintains the website (Code: TCA72).

Antibody Specialist
Creates high quality antibody preparations for use in Cytoskeleton’s Biochem Kit product line. Position is 50% R&D and 50% Production. Also assists in CellVizion product line development (ASP455).

Quality Control
Pivotal position in controlling high standards in product quality, creates informative product profiles in conjunction with R&D scientists and Scientific Writer (Code: FNT51).

Production Scientist
Creates user-friendly methods of large scale protein production, and produces high quality kits and protein preparations (Code: MAP41).

Small G-protein Specialist
Creates exciting new products based on assays and mechanisms in the Small G-protein field (HGH52).

For more information
Visit www.cytoskeleton.com/Scientist.htm or send resume to hr@cytoskeleton.com

ASCB Job Service
Free to Members

The American Society for Cell Biology Job Board invites ASCB members to post their CV free of charge. Individuals who post their CV may control access to identifying information. CVs are accessible and searchable without charge. Employers pay a nominal fee to list positions. Employers and job seekers contact each other directly; interviews may be scheduled by mutual convenience at any time throughout the year or at the ASCB Annual Meeting Career Center. For more information or to post your CV, go to www.ascb.org/careers.

FASEB Summer Research Conference

Protein Lipidation, Signaling and Membrane Domains
July 24-29, 2004
Tucson, Arizona

Organizers: John R. Silvius, Teresa L.Z. Jones
Anant Menon

Keynote Address: Mechanism and consequences of protein prenylation by Patrick Casey.

Application will be on the same website in late March. For additional information, contact mcgovern@faseb.org
MEETINGS CALENDAR

April 15. Washington, DC. 2nd Convocation on Enhancing the Postdoctoral Experience for Scientists and Engineers. See www7.nationalacademies.org/postdoc/.

April 22-23. Cleveland, OH. Cleveland Cell Biology Symposium: Regulation of Nuclear Function. See www.cwru.edu/med/cellbiology.

May 19-24. Washington, DC. “Forward to Professorship” workshop. See www.seas.gwu.edu/~forward/advance

