The ASCB Education Committee has selected A. Malcolm Campbell of Davidson College and Sarah C.R. Elgin of Washington University in St. Louis to receive ASCB Bruce Alberts Awards for Excellence in Science Education at the ASCB Annual Meeting in San Diego. Campbell and Elgin were named awardees in part for their joint contributions to the ASCB’s education journal, Cell Biology Education, now called CBE—Life Sciences Education. They also were selected because of their substantial individual contributions to U.S. science education. Campbell has been a leader in bringing genomics to the undergraduate curriculum; he authored a genomics textbook in 2001 and, that same year, founded the Genome Consortium for Active Teaching (GCAT) at Davidson.

Elgin founded the Science Outreach program, which serves K–12 schools in the St. Louis area. Last year the program reached 1,700 teachers and 24,700 students. Selected as an HHMI professor in 2002, Elgin more recently established Washington University’s Genomics in Education program to engage students in sequencing and annotating genomes. Campbell’s talk at the ASCB Annual Meeting is titled “Working Together to Improve Life Science Education.” It will be presented on Sunday, December 10. Elgin’s presentation, “Bringing Research into the Undergraduate Curriculum,” will be presented during the Education Initiative Forum on Monday, December 11.

Bruce Alberts of the University of California, San Francisco (UCSF), will replace Susan Hockfield as a keynote speaker at the ASCB Annual Meeting in San Diego. Hockfield had to cancel because of a schedule conflict. Alberts, former President of the National Academy of Sciences and ASCB President-Elect, will speak on “Frontiers in Cell Biology,” along with Nobel Laureate Thomas Cech of the Howard Hughes Medical Institute (HHMI).

Since returning to UCSF, Alberts, a professor of Biochemistry and Biophysics, has focused on applying aspects of what he learned in Washington about teaching, learning and stimulating innovation.

The Keynote Symposium will be held on Saturday, December 9, at 6:00 pm.

A bill to expand the federal stem cell policy to allow federally funded researchers to use human embryonic stem cells derived after August 9, 2001, passed the U.S. Senate 63–37. Last month’s approval by the Senate was 14 months after the House of Representatives passed the same bill.

The bill, H.R. 810, the Stem Cell Research Enhancement Act, was part of a package of biomedical research-related bills debated by Congress and signed into law on September 30, 2006.

Stem Cell Bill Passes Senate
Is Vetted by President, Congress Fails to Override

See Stem Cell Bill, page 15
Beyond Boundaries: An International Community of Cell Biologists

It is distressing to watch the news these days. The war in Iraq seems not to be approaching any peaceful closure. Civilians and soldiers are dying in large numbers as a result of the recently escalating crisis in the Middle East. Conflict reigns and effective communication seems chronically unattainable. When I see these challenges on such a grand scale, I wonder how individuals can make a difference to minimize strife and promote understanding in such a complex world.

As scientists, we are in a unique position to have an impact. No matter their age, race, gender, nationality, cell biologists share the common desire to understand the natural world and to use our knowledge to improve the human condition. We speak a common language and have shared values that include trust, integrity, and curiosity. We have built many relationships of mutual respect with colleagues through our collaborations and shared interests in scientific questions. In this time of significant discord on the planet, it seems particularly important to reinforce positive relationships and a sense of commonality with our scientific colleagues around the world. Cell biology is clearly an international affair with important discoveries occurring all over the globe and transcontinental exchange of results stimulating new advances at a staggering pace.

The International Face of the ASCB

Although the name of our Society may be taken to imply some national exclusivity, this is not the intent. Indeed, the ASCB is an international society for cell biology that has members from more than 50 nations, including every continent except Antarctica. International scientists account for nearly a quarter of the ASCB membership. As a result, the ASCB Annual Meeting, our newsletter, and our committee activities have the potential to be powerful vehicles for international exchange.

The ASCB International Affairs Committee

With the endorsement of the ASCB Council, I have made it a goal of my tenure as ASCB President to establish a robust ASCB International Affairs Committee (IAC). The goals of the IAC are to broaden the base of the Society’s international efforts by working with cell biology societies of other nations and coordinating international activities to promote scientific exchange. The IAC includes members from the USA, England, Japan, China, and India.

Past-President Zena Werb and President-Elect Bruce Alberts share my passion for fostering international exchange within the cell biology community. We have worked together and with members of the Committee to develop new programs that are specifically designed to foster international understanding, to support international scientific exchange, and to initiate efforts to deliver outstanding science to the developing world. Each of us has agreed to chair the IAC during our year as Past-President as a reflection of our personal commitment to these new efforts. Members of the Committee will meet in Bethesda this October to review the status of current efforts and develop priorities for the coming year. Some of the current efforts and plans are described below.

ASCB Leaders Meet with International Members

In an effort to best serve our international members, we are inviting 100 international members who register for the Annual Meeting in San Diego to meet with Council and the IAC and discuss how the ASCB can best serve their needs as cell biologists. We will be interested to learn what ASCB activities and programs are most highly valued by our international members. We look forward to learning the same from all ASCB members. (Please plan on completing the ASCB member survey this fall. Look for the emailed link.)
Fostering Scientific Exchange Across Borders

One of the historical strengths of the ASCB has been the sponsorship of an annual meeting that features outstanding science as well as valuable discussions regarding cell biology education, women in cell biology, minority affairs, public policy, and practice of science. The ASCB Annual Meeting is an exceptional venue for learning about exciting new advances, establishing new contacts, meeting old friends, and considering creative strategies to face current challenges and to take advantage of new opportunities.

To expand on the highly successful annual meeting, with the specific goal of stimulating crosscultural scientific exchange, the ASCB will collaborate with international colleagues and scientific societies to sponsor summer conferences. The first of such meetings is being sponsored in partnership with the European Cytoskeletal Forum and will be held in Dijon, France, in June 2007. The meeting is being organized by ASCB members David Drubin, Daniel Louvard, and Laura Machesky on the topic of the Dynamic Interplay Between Cytoskeletal and Membrane Systems. In addition to the exciting science that will be represented at the meeting, we hope that many student and postdoctoral trainees will participate and will develop professional relationships and lasting friendships with international colleagues.

Building Scientific Capacity

Poverty, hunger, and illness are major challenges facing the developing world. Improvements in education are key to breaking this cycle. Scientific education is particularly important for ensuring the health and welfare of communities around the world. With modern biology and medicine advancing at a staggering pace, it is critical for researchers and educators around the globe to have access to recent advances and the newest techniques. ASCB members can contribute to enhancing capacity in the developing world by participating in educational initiatives that bring modern approaches, state-of-the-art technologies, and access to information.

ASCB member Dick McIntosh (USA) and Keith Gull (England) worked with colleagues, George Lubega (Uganda) and Luc Vanhamme (Belgium), to develop a course for postgraduate African trainees and research scientists that was focused on Bioinformatics and Post-Genomic Approaches to Trypanosomiasis and Malaria. The course was taught earlier this summer in Uganda and was a resounding success. It was a very exciting strategy to introduce state-of-the-art research approaches and concepts around a topic of key medical relevance in the region. Illustrating the keen interest in the opportunity, nearly 250 individuals from 15 African nations applied to participate in the course. Partial funding for the course came from the Human Frontiers in Science program. ASCB submitted a proposal to the Carnegie Corporation of New York and was awarded a grant to support a significant expansion of the trainee group and to further the educational efforts by developing the iBioseminars program described below.

The iBioseminars Initiative

Bringing together talented young African scientists with a collection of international scholars for a face-to-face workshop on molecular pathogenesis is one way to disseminate information and establish relationships. This approach is intense and has the advantage of direct interpersonal interactions. However, a single course cannot reach all the talented and deserving individuals who would benefit from increased exposure to advanced scientific information and expertise.

It is with this in mind that IAC member Ron Vale is working to develop a series of state-of-the-art electronic research seminars called iBioseminars. The seminars are designed to convey current information as well as insights into the discovery process and the development of current models. So far, four pilot seminars have been produced: Julie Theriot (Stanford University) on the cell biology of intracellular parasites, Ron Vale (University of California, San Francisco) on molecular motor proteins, Baldomero Olivera (University of Utah) on what cone snail toxins tell us about the nervous system, and K. Eric Drexler (Institute for Defense Analyses) on the future of nanotechnology.

It seems particularly important to reinforce positive relationships and a sense of commonality with our scientific colleagues around the world.

[C]ell biologists share the common desire to understand the natural world and to use our knowledge to improve the human condition.
Mullins Appointed 2007 Program Chair

ASCB President-Elect Bruce Alberts announced the appointment of Dyche Mullins of the University of California, San Francisco, to serve as Chair of the ASCB Program Committee.

Mullins will head the Committee charged with planning the scientific program for the 47th ASCB Annual Meeting, to be held in Washington, DC, from December 1–5, 2007. He will assemble a committee that will recommend eight symposia topics and 32 minisymposia topics.

Scientific program suggestions are welcome at ascbinfo@ascb.org.

A Culture of Global Responsibility

The magnitude of challenges facing the developing world may seem overwhelming and it is natural to wonder, what can I possibly do to make a difference? Hearing about the excitement of the African trainees who participated in the Uganda summer course this summer reinforced for me that the efforts of a small group of committed individuals can truly have a significant impact. And there is such an unmet need! Building bridges, one person at a time. That is a way in which each of us can make a difference.

ASCB members are well positioned to establish productive associations with colleagues around the world. Senior scientists need to seek opportunities for their trainees to interact with researchers in other countries to promote an international scientific culture. We have a responsibility to contribute to making the world a healthier and safer place. If altruism doesn’t provide sufficient motivation, one has only to consider potential threats such as a bird flu pandemic to appreciate that it is also a matter of self-interest to work toward improving the standard of living and human health on a global scale.

Changes will be possible through improvements in education. In addition, global understanding will increase by communication and relationships. At times when the world seems crazy, scientists can help to foster understanding across national borders. Our relationships with colleagues around the world are important for promoting scientific advances, but also have a positive impact that extends well beyond our discipline.

Comments are welcome and should be sent to president@ascb.org.
shRNA$^{\text{mir}}$...Breakthrough for RNAi Knockdown!

Introducing Expression Arrest$^{\text{TM}}$ Assay-Ready$^{\text{TM}}$ shRNA$^{\text{mir}}$

Our unique microRNA-adapted design maximizes knockdown specificity and efficiency over all other RNAi solutions. Try something better. Try something guaranteed to work!

- Already cloned into retroviral and lentiviral vectors
- Entire human and mouse genomes available
- Transient, stable or *in vivo* RNAi
- Guaranteed to work
- Assay-ready format for superior high throughput RNAi screening

Why experiment when you can discover?

Your expert partner for Genomic, RNAi and Proteomic resources.

Toll Free 888.412.2225
www.openbiosystems.com

MAC Seeks More Volunteers

Although the biological sciences remain the scientific fields with the highest minority representation, the number of minority faculty, particularly women, is on the decline. Furthermore, recent data from the National Science Foundation indicate that by 2050, most of the 18–24-year-old undergraduate students in the United States will come from minority populations. The continued excellence of the scientific endeavor in the United States depends on the increased participation of minority populations in all fields of science. Programs designed to increase the participation and retention of minority individuals in science are critically important and can only succeed with the support and participation of society at large.

The ASCB Minorities Affairs Committee (MAC) has worked to increase the number of minority scientists in cell biology for over 20 years. We are delighted that ASCB President Mary Beckerle has made diversity and opportunity in science a priority for the ASCB. Some of the opportunities for members of ASCB to participate in MAC activities, and a few of the ways ASCB members can have an impact in their home institutions, are described in this column.

MAC programs are directed at undergraduate and graduate students as well as postdocs and junior and senior faculty. These programs are supported by a National Institute of General Medical Sciences (NIGMS) Minority Access to Research Careers (MARC) grant with additional funding from ASCB, the Burroughs Wellcome Fund, National Institute on Aging, and St. Jude Children’s Research Hospital. MAC provides travel grants to the ASCB Annual Meeting for undergraduate students, graduate students, and postdocs, as well as faculty who submit abstracts. Recipients of these travel grants present their work at a special poster session as well as at the general sessions. Abstracts are judged during the Minority Poster Session by MAC as well as other members of the Society—please volunteer! Members can also provide much needed encouragement by visiting posters presented by minority scientists and engaging the presenters in discussion. A list of the posters can be obtained from the MAC Minorities Affairs Director before the ASCB Annual Meeting or at the Ed/MAC Booth at the meeting. Travel Awardees also take turns volunteering at the MAC Booth, so stop by and get to know them.

MAC also funds speakers in cell biology at the Annual Biomedical Research Conference for Minority Students (ABRCMS) and at the annual meeting of the Society for the Advancement of Chicanos and Native Americans in Science (SACNAS). These two conferences are aimed at minority students. If you are interested in giving a talk, let MAC members know. You can also encourage your institution to set up a recruiting booth at these meetings and, even better, attend yourself. You will find talented students and postdocs you might not otherwise meet.

Minority graduate students and postdoctoral fellows are supported in summer courses and research programs at the MBL and Friday Harbor Laboratories (see page 8). ASCB members can encourage minority students at their home institutions to apply for these slots. (For more information, visit the MBL website at http://courses.mbl.edu and the FHL website at http://depts.washington.edu/fhl/) Each summer MAC also hosts an MAC Scholars Lunch and Networking Program at MBL to provide minority students with an opportunity to network with summer investigators there.

ASCB members can host a summer research experience for a minority faculty member. MAC’s NIGMS MARC grant provides up to $13,000 for an eight- to ten-week research experience, plus $700 for travel expenses. An additional $3,700 is provided to the Visiting Professor for continued research and research training activities after return to his/her home institution. MAC encourages a second summer for Visiting Professors in the same lab. More information can be found on the MAC website at http://www.ascb.org/index.cfm?navid=90&cid=498&ctocode=nws3.

MAC’s MARC grant also funds four Linkage Fellows, who are faculty at minority-serving institutions. MAC believes that a partnership between faculty at these institutions and faculty at research-intensive institutions is essential if the number of minority scientists is to increase. The Linkage Fellows are listed on the MAC web pages of the ASCB website. Consider giving a seminar at one of these primarily undergraduate institutions—your visit could make a critical difference in a student’s decision to enter graduate school.

Every year since 1994 a minority scientist has presented the E.E. Just Lecture at the ASCB Annual Meeting. This is perhaps the most visible MAC activity, and many members of the Society attend this lecture. Members can participate in this activity by nominating individuals to give this lecture. Nominations can be sent to the Director of Minorities Affairs at the ASCB Office (mac@ascb.org).

In your home institution, support diversity in admissions and faculty recruitment. Welcome minority students to your department and, if possible, participate in summer research programs for minority students and faculty. When you travel, visit minority-serving institutions. Your visit can have a positive effect in attracting highly qualified minority students to your institution.

—Lydia Villa-Komaroff
More Modes

Molecular Devices is the leading supplier of benchtop microplate readers. Now we’re giving you more modes in one compact instrument by introducing SpectraMax® M5®, a tunable benchtop reader that gives you superior results in five modes.

- Widest spectrum of absorbance and fluorescence applications in microplates or cuvettes
- Sensitive luminescence at one or multiple wavelengths
- FP performance that is unparalleled by any monochromator-based instrument
- TRF, HTRF®, IMAP®, TR-FRET, and other TR-FRET assay capabilities
- Complete hardware and software validation tools

Whether you’re screening at high throughput or developing assays in cuvettes or 6- to 384-well microplates, SpectraMax M5® is the only reader you’ll need.

Expect more. We’ll do our very best to exceed your expectations.

SoftMax Pro 5 software

SoftMax® Pro 5 from Molecular Devices is the only microplate analysis software that enables you to control instruments and quickly analyze data on both Mac® OS X and Windows® platforms.

Analysis: 5-parameter logistic function, parallelism (PLA) with observation weighting for bioassay assay validation

Integration: XML export for seamless data communication with LIMS/SDMS/robotics systems

Protocols: Over 120 ready-to-run assay templates for instant results generation and summarization (e.g., IC₅₀, Michaelis-Menten, ADME, ELISA, nucleic acids and protein quantification, cell growth, viability, and migration, reporter gene, endotoxin testing, SNP detection, pipettor validation, etc.)

Compliance: Enhanced GxP & FDA 21 CFR Part 11 support with SoftMax Pro 5 GxP

Usability: Dozens of user interface enhancements make SoftMax Pro 5 very easy to use

SoftMax Pro 5 simplifies data collection and significantly reduces the time required for analysis and reporting. Call +1-800-635-5577 or visit www.moleculardevices.com/softmaxpro.
MAC Meeting Held at Woods Hole

Under the leadership of Chair Lydia Villa-Komaroff, the ASCB Minorities Affairs Committee (MAC) held its annual spring/early summer meeting in Woods Hole, MA. The Committee discussed issues related to its ongoing sponsored activities. These activities are funded by a National Institutes of Health (NIH)/National Institute of General Medical Sciences (NIGMS) Minority Access to Research Careers (MARC) grant.

The MAC underscores its commitment to minority science education and training through direct involvement with early career minority scientists and students in eight program activities:

1. Visiting Professors program
2. Linkage Fellows program
3. Summer course support at the Marine Biological Laboratory (MBL) in Woods Hole, MA
4. Summer course support at Friday Harbor Laboratories (FHL) at the University of Washington, Seattle
5. Annual MAC Scholars Lunch at MBL
6. Junior Faculty and Postdoctoral Fellows Workshop
7. Annual MAC Mentoring Symposium and Poster Competition
8. Annual selection of E.E. Just Lecturer

MAC members present for the June 23 meeting included Renato Aguilera, David Burgess, Cherie Butts, Anthony DePass, Dick Goldsby, Eva McGhee, Thoru Pederson, Peter Satir, Maria Elena Zavala. ASCB Executive Director Joan Goldberg and ASCB Minorities Affairs Director Irelene Ricks were in attendance, as were 20 invited guests.

New MARC evaluator, Joy Quill, was competitively selected by MAC to conduct survey evaluations of all MAC programs, including activities held at the ASCB Annual Meeting. At the MAC meeting in Woods Hole, Quill noted that she will gather and analyze both qualitative and quantitative data to determine which aspects of MARC programs were working well and which areas might need improvement or modification.

MAC member Anthony DePass discussed highlights of a Council for Diversity in the Sciences Stakeholders Meeting (May 4) held at the Federation of American Societies for Experimental Biology (FASEB) headquarters in Bethesda, MD. In attendance at that meeting, DePass recalled that NIH officials discussed the level of science conducted at the Annual Biomedical Research Conference for Minority Students (ABRCMS) and the Society for the Advancement of Chicanos and Native Americans in Science (SACNAS) Annual Meeting. DePass added that NIH was particularly interested in including components that encourage critical thinking and scientific engagement beyond currently expressed levels. There was also concern expressed by NIH about possible declines in minority student attendance at national scientific society meetings (such as the ASCB Annual Meeting) in favor of repeated appearances at ABRCMS and SACNAS—a practice NIGMS is seeking to discourage, DePass concluded.

MAC was concerned that NIH may not fully acknowledge the demonstrated success of the ABRCMS and SACNAS meeting in mentoring undergraduate minority students. MAC members agreed that the next Council for Diversity meeting (date to be announced) should also address NIH concerns about the continued relevance—and positive impact of—ABRCMS and SACNAS on underrepresented students in the biomedical sciences.
Looking for high quality, reliable apoptosis reagents?

Trust AbD Serotec

AbD Serotec offers you one of the widest ranges of antibodies and kits for studying apoptosis, all guaranteed to ISO 9001 quality standards.

- Analyse specific caspases, cathepsin and membrane permeability transition events with our apoptosis detection kits
- Antibodies to all key apoptosis pathway components in purified and conjugated formats suitable for a range of applications
- New ADAMTS, MMP, TIMP, and caspase antibody specificities
- Save money all year with our fantastic '4 for 3' offer

AbD Serotec — Your first choice for antibodies!

Magic Red™ is a trademark of Immunochemistry Technologies Inc. USA.

North America: 1 800 265 7376
Germany: +49 211 93 503 10
Scandinavia: +47 62 52 92 77
UK & Ireland: +44 1865 852 700
France: +33 1 34 25 83 34
Email: antibodies@ab-direct.com

www.ab-direct.com/ASCB
MEMBERS in the News

Wolfgang Baumeister of the Max Planck Institute of Biochemistry, an ASCB member since 1998, has been awarded the 2006 Ernst Schering-Preis in the field of electron tomography.

Martin Chalfie of Columbia University, an ASCB member since 1980, received the 2006 Lewis Rosentiel Award for Distinguished Work in Basic Medical Science. He shares the award with Roger Tsien of the University of California, San Diego/HHMI. (See ASCB Newsletter, July 2006, p. 19)

Tom Misteli of the National Cancer Institute/NIH, an ASCB member since 1995, received a 2006 NIH Director’s Award.

MAC Supports Students at FHL

The ASCB Minorities Affairs Committee (MAC) provides course support for underrepresented students at Friday Harbor Laboratories (FHL) at the University of Washington, Seattle. Over the past several years, research has been conducted on many different aspects of cell biology.

The two MAC-supported FHL students this year are Brad Dickerson, Swarthmore College; and Angelica Castillo, Chaminade University of Honolulu.

Dickerson's research focus is on the reproductive ecology of marine invertebrates, with an emphasis on the development of larvae. Castillo's research focus is on microscopy and image analysis of thin filaments in muscle tissue.

MAC Scholars Lunch at MBL

June 23 marked the 21st year of the ASCB Minorities Affairs Committee (MAC) Annual MAC Scholars Lunch. The Lunch recognizes students' participation in MBL courses and research programs. This year, students and post-doctoral fellows supported by MAC at MBL include: Derek Applewhite, Northwestern University (Physiology Course); Stacy Kaltenbach, Scripps Institution of Oceanography (Embryology Course); Jacqueline de Marchena, University of North Carolina at Chapel Hill (Neural Systems & Behavior Course); James Phillips-Portillo, University of Arizona (Neural Systems & Behavior Course); Terrence Wright, Emory University (Neural Systems & Behavior Course); Rudy Bellani, Rockefeller University (Neurobiology Course); Rhonda Dzakpasu, University of Michigan (Neurobiology Course); Ulisses Ricoy, University of Texas, San Antonio (Neurobiology Course); and Shaye Lewis, Texas A&M University (Frontiers in Reproduction Course).

Hopkins to Receive WICB Citation

The ASCB Women in Cell Biology Committee (WICB) will present the WICB Special Citation for Advocacy for Women in Science to Nancy Hopkins of the Massachusetts Institute of Technology (MIT).

The one-time award recognizes Hopkins for her pioneering work at MIT, studying gender bias, and for the support and mentoring she has offered others.

The WICB Special Citation for Advocacy for Women in Science will be presented during the WICB Evening Program on Monday, December 11, at the ASCB Annual Meeting in San Diego.
MAC Hosts First Junior Faculty and Postdoctoral Fellows Workshop

On June 22, the ASCB Minorities Affairs Committee (MAC) hosted 17 junior faculty and postdoctoral fellows at a Career Training Workshop designed to provide information on career development training in publications, grant writing, pedagogy, balancing a career with life demands, and the importance of research ethics. MAC members, and ASCB Subcommittee on Postdoctoral Training (SCOPT) Chair Cherie Butts, served as interactive facilitators in a lively exchange of presentations and discussion.

Workshop participants included: L’Aurelle Johnson, University of Minnesota; Vivian Navas, University of Puerto Rico, Mayaguez (MAC Linkage Fellow); Alex Rodriguez, Albert Einstein College of Medicine; Jayne Reuben, Baylor College of Dentistry; Mary Alpaugh, City University of New York (MAC Linkage Fellow); Latanya Hammonds-Odie, Spelman College (MAC Linkage Fellow); Veronica Lopez, University of California, Davis; Cherie Butts, NIH/NIMH Postdoctoral Fellow; Seyi Vanderpuye, University of Albany (Georgia); Catherine White, University of North Carolina, Chapel Hill; Antonio Baines, University of North Carolina, Chapel Hill; Omar Quintero, Franklin and Marshall College; Vallie M. Holloway, Mayo Clinic; Inneke Johnson, North Carolina Central University; Tanya Gerald, North Carolina Central University; Brad Shuster, New Mexico State University (MAC Linkage Fellow); and Karen Baskerville, Mayo Clinic.

Join us in Boston to explore how chemists and biologists are contributing concepts and tools to our understanding of the molecular basis of cell biology.

Session 1: The nucleus and cell division
Session 2: Metal ions and metabolites
Session 3: Cytoplasmic processes
Session 4: Membranes
Session 5: Future directions: cell and chemical biology moving forward

Early bird registration - save $50/£27/€32. Limited places available.

Register at http://www.nature.com/nchembio/meetings/2006symposium to avoid disappointment.

Keynote Speakers
Carolyn Bertozzi (University of California at Berkeley, CA)
James Rothman (Columbia University, NY)

Speakers
Philippe Bastien (EMBL, Germany)
Valerie Culotta (Johns Hopkins, MD)
Tarun Kapoor (Rockefeller University, NY)
Akihiro Kusumi (Kyoto University, Japan)
Jeremy Nicholson (Imperial College London, UK)
Joseph P. Noel (The Salk Institute, CA)
Garry Nolan (Stanford University, CA)
Richard Proia (National Institutes of Health, MD)
Peter Sorger (MIT, MA)
Kai Simons (Max Planck Institute, Germany)
Jack Taunton (UCSF, CA)
Antoine van Oijen (Harvard University, MA)

http://www.nature.com/nchembio/meetings/2006symposium
Diversity

To the Editor:

I am currently serving as a member of the ASCB Minorities Affairs Committee and have been involved in ASCB activities for close to a decade. During that time, I have read plenty of President’s Columns, but the article on diversity (“The Diversity Imperative,” March 2006) was by far the best I have read. In my case, ASCB President Mary Beckerle was preaching to the converted, but for those out there who do not think of diversity at all—it should have been an eye opener. Thank you for bringing those issues to the forefront, especially during a time when “affirmative action” is under attack. I’m looking forward to thanking Mary Beckerle in person at the ASCB Annual Meeting.

—Renato J. Aguilera

Dear Labby

To the Editor:

I write to congratulate Dear Labby on what I regard as a truly outstanding advice (mentoring) column that is written for the ASCB Newsletter. I consistently read Dear Labby and have recommended it to my students, postdocs, and fellow faculty members as a source of valuable and pragmatic information that can help individuals navigate in the often complex world of academic biomedical research. Keep up the great work. Labby’s efforts are appreciated.

—Warner C. Greene

ASCB Annual Meeting Updates

The ASCB 46th Annual Meeting Preliminary Program, registration, abstract submission, and housing sites are available online. Visit www.ascb.org.

For best sleeping room selection, book your room early. Rooms begin at $59 per night. Online housing reservations can be made at www.ascb.org.

See you in San Diego!

Celldance Festival 2006

ASCB’s Second Annual Cell Biology Film Contest

The First Prize is $500. And there are $500 in additional prizes, along with honorable mentions. Entry deadline is September 30, 2006.

To open the eyes of the world to the best in visually stunning cell videos that highlight cell biology, the ASCB Public Information Committee (PIC) announces the return of “Celldance Festival 2006,” the ASCB’s Second Annual Cell Biology Film Contest.

First prize is $500 and a free registration to the 2006 ASCB Annual Meeting in San Diego, December 9–13. Additional runners up will receive smaller cash prizes. A “Celldance Festival 2006” Winners’ Reel will be posted for free, open-access downloading at www.ascb.org and deposited in the new ASCB Image & Video Library.

The contest is open to ASCB members and ASCB member applicants only. Entry deadline is September 30, 2006. For further details on how to enter (and the fine print in full), go to www.ascb.org/index.cfm?navid=128.
Imaging Unlocked!

Laser microdissection of cells for highly specific molecular analysis is faster and easier with the **NEW Leica LMD6000 laser microdissection system**. Leica’s unique method of automatic single-cell selection (AVC), dissection, and transfer to a reaction vessel increases laboratory throughput. Even thick specimens are quickly cut with the LMD6000’s powerful diode laser.

Starting a new lab? Beginning a new research project? Contact your local Leica representative and take advantage of big savings with Leica’s **New Investigator Program**!

Experience a new level of speed with complete imaging solutions from Leica Microsystems.
Visit: www.leica-microsystems.com/speed2

Intelligent Automation

Leica Microsystems, Inc., 2345 Waukegan Road, Bannockburn, IL 60015
Tel. 847-405-0123, 800-248-0123, Fax 847-405-0164, In Canada call 800-205-3422
©2006 Leica Microsystems Inc., BNA547
Dear Labby,

I am in my fourth year as an Assistant Professor in a good (but not “elite”) biology department. Last summer I gave my first big invited talk, at a Gordon Conference. To my astonishment, within a few weeks I received inquiries from two department chairs asking me if I would be interested in being considered for a position. Both would be immediately tenured Associate Professor positions and both are in more research-intensive institutions than my present one. Both would also be a change for me, as they are cell biology departments at medical schools, in contrast to my present department, which covers all of biology.

My first instinct was to approach this purely selfishly; that is, ask what is the salary and would living in either city suck? But then I settled down and took a more sober approach. I came to realize that this is a momentous decision and, even at this pre-offer stage, is one that carries all sorts of political complexities. For example, if I go ahead with these interviews, should I tell my present chair? Or should I await offers? What if word gets out in my department that I went on these interviews but didn’t get offers? I think I am liked by both my chair and other tenured faculty here, and I feel that I am on a good course to get tenure. But if I am perceived as “playing games” and end up staying here, will this harm my chances for tenure and respect? ASCB has so many good mentoring workshops for young faculty at its Annual Meetings, but I don’t think my particular situation has been covered. Can you give me some advice?

—Surprised at the Interest

Dear Surprised,

First, don’t be surprised. The two chairs who contacted you are experienced, senior scientists who saw something special in your talk, and in you. Beware of the “imposter syndrome” in which young scientists often cannot believe that good things are happening.

Labby suffered from this until reaching the age of 35 or so, when it finally seemed that maybe, just maybe, some good things were happening.

Let’s examine each of your questions. Regarding informing your chair prior to going on the interviews, that depends on your relationship with her/him. If you are close, you might want to risk mentioning the interviews and face the possible downside of having to admit that you didn’t receive an offer—if such is the case. The upside would be that most chairs straddle a fine line between uncertainty about their faculty’s excellence and a willingness to react once convincing evidence for it appears; even being asked to apply for these two positions might elevate your status with your present chair. So, even if you’re not close to your chair, you may elevate your reputation while sharing your news—and possibly, your uncertainty. Not sharing the news is OK too; you may seek confidentiality from the interested chairs, but confidentiality when you give seminars or chalk talks at each institution will be nearly impossible to maintain. At that time, you’ll likely want to announce your trips and choose to answer questions regarding intent with as much or as little information as you want to divulge. Considering your options is, after all, your due, not game playing.

Labby recommends letting the interviews take you where they may, which is their purpose for both parties after all. You may be turned off by one or both interviews, or your chalk talks may be unappreciated by one or both audiences. (This would mean either that you slipped up or that they are Philistines and the institutions are not so hot after all.) And, as in all career decisions, you must think about your ideal setting. Do you like being around a broad group of biologists, or would you prefer to be in a more specialized setting? How would students differ? Research opportunities? Funding and security? Medical schools and biology departments have never been more different places in the history of American science than they are today, so think deeply about this.

Surely you’ll consider salary, quality of graduate students, lifestyle issues, and a job for your spouse or partner. However, if you get one or both offers, you will want to look at yourself in the mirror and ask yourself what setting will likely bring out the best in you. You do not sound unhappy in your present position. That you have been sought out by two chairs of research-intensive departments is very significant. The key question is how you feel about these two departments when you interview. If either chair impresses you less (or more) than your present one, give that some weight. Also, is your present chair or either of the ones who want to interview you going to be moving on or retiring in the near future? If so, you might weigh that as well. When you interview, be especially sure to scrutinize the students relative to those at your present institution. And you will also need to consider whether you can live with other aspects of medical school life, such as a possible greater dependence on external funding, Labby knows that weighing all these factors sounds formidable, but it is less analytically and intellectually challenging than doing excellent research, in which you clearly already excel!

—Labby

Direct your questions to labby@ascb.org. Authors of questions chosen for publication may indicate whether they wish to be identified. Submissions may be edited for space and style.
S. 2754 into law—after their speedy approval in the House—and claim the title “Stem Cell President,” despite vetoing H.R. 810. A small band of House stem cell supporters, led by Reps. Castle (R-DE) and DeGette (D-CO), organized many House Democrats and moderate House Republicans to vote against S. 2754. They were able to defeat the bill and deny Bush the moniker of “Stem Cell President.” The Republican leadership in the House decided not to try again to pass S. 2754 because of the very strong support for H.R. 810 in the House.

The next day, President Bush vetoed H.R. 810 and signed S. 3504 in private, instead of at a previously planned public ceremony. He later made a speech in the White House stating that embryonic stem cell research “violate[s] the dignity of human life,” and “crosses a moral boundary that our decent society needs to respect.” However, Bush’s 2001 policy allows for federal funding of such research on stem cell lines developed before August 9, 2001, the date he announced the policy.

The President also claimed that research permitted by H.R. 810 would “encourage the further deliberate destruction of human embryos.” In fact, H.R. 810 would only allow research with stem cells “derived from human embryos that have been donated from in vitro fertilization clinics, were created for the purposes of fertility treatment, and were in excess of the clinical need of the individuals seeking such treatment.” The bill additionally requires that the embryos “would never be implanted in a woman and would otherwise be discarded.”

Responding to Defeat

Hours after the President’s veto of H.R. 810, the House of Representatives failed to override Bush’s veto of H.R. 810. The vote was 235–193, less than the two-thirds majority vote needed to override a presidential veto.

Congressional champions of expanded federally funded stem cell research were quick to respond to the presidential veto. Senator Tom Harkin (D-IA) said, “The veto he cast is
FY 07 Budget*

National Institutes of Health
FY 06 budget
$28.258
President’s FY 07 budget request
$28.258
House Appropriations Committee
$28.258
Senate Appropriations Committee
$28.5

National Science Foundation
FY 06 Budget
$5.58
FY 07 budget request
$6.020
House Appropriations Committee
$6.020
Senate Appropriations Committee
$5.991
*Numbers provided in billions

Despite the veto by President Bush, the success of getting a stem cell bill passed by a Republican House and Senate is a huge achievement. It is due, in large part, to the educational efforts of patient groups, universities, foundations, and scientific societies like the ASCB. The Coalition for the Advancement of Medical Research (CAMR), which was co-founded by the ASCB, was the coalition that brought these various groups together on behalf of expanded stem cell research. In a report about the veto of H.R. 810, *Nature* said, “It is also testimony to the strength of the Coalition for the Advancement of Medical Research (CAMR), an umbrella group of disease and research advocacy groups, that lobbied relentlessly for the bill. ‘There’s never been a group strong enough to push back against the pro-life lobby in Congress. And this group did that,’ notes Arthur Caplan, director of the Center for Bioethics at the University of Pennsylvania.”

In the days since the Bush veto, political polls have indicated that the stem cell issue may play an important role in U.S. congressional elections this November.

References

Europe Expands Stem Cell Research

Less than one week after the veto of H.R. 810 by President Bush, the European Union (EU) decided to provide US$63 billion in funding for human embryonic stem cell research. EU-funded researchers will not be limited in the number of IVF cell lines they will be able to use for research, but the new EU regulations do prohibit the derivation of those lines with EU funds. In the United States, NIH-funded researchers have access to only 22 lines.
Creationism Monitor

Ohio—A member of the Ohio school board has proposed changes to the state science standards. Board member Colleen Grady has suggested the addition of “Discuss and be able to apply this [hypothetical scientific disagreement] in the following areas: global warming; evolutionary theory; emerging technologies and how they may impact society, e.g., cloning or stem-cell research.”

New Mexico—The Rio Rancho school board has amended its science policy to include the following state requirement: “Students shall understand that reasonable people may disagree about some issues that are of interest to both science and religion (e.g., the origin of life on earth, the cause of the big bang, the future of the earth).”

Kansas—Kansas State Board of Education primary results mean there will be at least a 6–4 seat pro-evolution majority in office in January. The election reverses the current conservative majority that instituted science curriculum standards critical of the teaching of evolution.

Source: various media reports

Joint Steering Committee for Public Policy Events

Right: Elias Zerhouni, Director of the National Institutes of Health, spoke to members of the Congressional Biomedical Research Caucus at a July 20 presentation hosted by the JSC. Below: JSC Education Liaison Peter Kyros and Zerhouni.

Re-Aim Blame for NIH’s Hard Times

Anxiety and anger are rife among the biomedical research community over the dwindling fortunes of the National Institutes of Health (NIH). The anxiety is justified: Success rates for grant applications have fallen, on average, from over 30% in 2003 to under 20% (and to even less at some Institutes), and the Bush administration’s budget projections imply further declines. But the anger is another matter: Much of it is mistakenly directed at NIH itself and threatens to undermine the credibility of the agency with both its federal patrons and its public constituencies.

Between 1999 and 2003, NIH enjoyed extraordinary largesse as Congress and two successive administrations doubled its budget to about $27 billion. During this period, as expected, NIH awarded more multiyear grants, committing itself to increasing fiscal obligations in the ensuing years. At the same time, the average grant size grew beyond the rate of inflation and the number of applications also rose significantly.

After such expansion, a gradual decline toward more customary increases is required to ensure that substantial uncommitted funds are available for new grants. But the hoped-for “soft landing” did not occur. Most federal budgets, including NIH’s, have flattened in the service of larger budgetary agendas, such as tax cuts and financing the war in Iraq. Congress has turned a skeptical eye on NIH, demanding to know at an unrealistically early stage what exceptional benefits the doubling has brought to those suffering from diseases and asking why NIH cannot prosper with its doubled budget.

Now, facing its third consecutive year of sub-inflationary increases, NIH is likely to have 11% less spending power in 2007 than it did in 2004.

Rather than galvanizing political action to restore at least inflationary budgetary increases, these developments have precipitated an irrational response from some members of our research community. They have begun to blame the agency itself, accusing the NIH administration of mismanagement and ill-conceived adventures.

The favorite whipping boy is the recently developed NIH Roadmap. The contents of the Roadmap were shaped a few years ago by extensive consultations with extramural scientists, not invented unilaterally by the NIH leadership, and represent a response to converging forces, including demands from Congress—and from diverse physicians, disease-research advocates, and scientists—for a greater sense of mission, more risk-taking, and expanded interdisciplinary research. In its first couple of years, the Roadmap has launched laudable programs, supported mainly by highly competitive awards to individual investigators, to encourage creative but high-risk research (the Pioneer Awards); new approaches to biomedical computing, structural biology, nanomedicine, and chemical biology; and a reconfiguring of the infrastructure for clinical research.

Despite its high ambitions, the Roadmap has required no more than a modest 1.2% of the NIH budget. “Shelving” the Roadmap, as called for by one recent commentary,* would not heal NIH’s financial maladies. But it just might persuade Congress and other potential critics that members of the biomedical research community are hopelessly inured to change and less concerned about the commonweal than the professional well-being of scientists.

What then is to be done? First, stop blaming NIH—it is a victim, not a culprit, and it urgently needs our collective help. Second, redirect the hue and cry to Congress and the White House. Professional societies and disease-advocate groups have taken up the cause, but investigators in the trenches have been singularly silent. And third, support NIH in its efforts to manage resources prudently: Understand the nature of its difficulty and the rationale for restricting the size of awarded grants; encourage favored treatment of applications from scientists seeking their first awards; and accept opportunities to provide advice by serving on NIH’s advisory and review panels.

This is a time for concern and action, not despair. Biomedical research has found itself in seemingly dire straits before, yet recouped rapidly when Congress learned that the health sciences were adversely affected by budgetary shortfalls.† NIH still has potent allies in Congress. The public enthusiastically supports health research and recognizes that modern science is making rapid progress against feared diseases. Scientists should reinforce those alliances by making common cause with the leadership of NIH, rather than unjustly undermining its credibility.

—J. Michael Bishop and Harold Varmus

The World’s leader in competitive custom peptide synthesis (cCPS)

- Custom Peptide Synthesis
- Peptide Arrays
- All Commercially Available Modifications
- From mg to multiple Kg
- Quotes within 24 hours
- Delivery in 2-3 weeks

ISO9001 Certified
cGMP peptides
cost and quality unmatched

CPC Scientific, Inc. 1430 Koll Circle, Suite 101 San Jose, CA 95112
sales@CPCScientificInc.com www.cpcscientific.com

Tel. (408) 437-7564
(408) 437-7594 Fax
In response to mating pheromones, haploid a and α yeast cells fuse to form a/α diploids in a mating process that involves cell cycle arrest and remodeling of the cell wall to permit fusion. In the absence of an appropriate partner the mating pheromones can also trigger cell death. There have been conflicting reports as to the mechanisms and pathways leading to cell death, and it has been suggested that this process assists species viability by ensuring the demise of cells unsuccessful in mating. By examining both the pheromone concentration dependence and kinetics of cell death, the authors identify three kinetically and mechanistically distinct pheromone-triggered cell death pathways. The three pathways involved distinct pro-death and anti-survival signals. Importantly, none involved the yeast caspase-like protein and all lacked the hallmarks of apoptosis. Thus, if essential response pathways or an appropriate partner are lacking during mating, yeast cells appear to die by necrosis-like mechanisms, rather than by an altruistic, apoptotic process.

Upon entering host cells by receptor-mediated endocytosis and after disruption of the endosomal membrane, adenoviruses are released into the cytoplasm. Using minus-end directed dynein motors, they then traffic along microtubules (MTs) towards the nucleus for replication. Adenoviruses take advantage of host cell processes to enhance the efficiency of each of these stages of viral infection. Here, the authors describe several aspects of MT dynamics that are modified by infection to enhance the efficiency of the MT-mediated “search and capture” of adenoviruses released at the cell periphery and their translocation to the nucleus. Specifically, adenoviruses increase the amount of stable, posttranslationally modified MTs, increase the rate of MT nucleation at centrosomes, and alter the dynamic behavior of MTs at the cell periphery by prolonging periods of MT growth and reducing the frequency of catastrophic disassembly. Although the adenovirally encoded factors that cause these changes in MT dynamics are unknown, the transient activation of RhoA is required for the accumulation of modified MTs and Rac1 plays a role in modification of MT dynamics at the periphery.

Intercellular adhesion is mediated by the calcium-dependent dimerization of transmembrane E-cadherin molecules expressed on neighboring cells. These transient interactions are transient, allowing for the dynamic and plastic nature of intercellular contacts. The transient nature of these interactions was thought to result from reversible, cytoskeleton-dependent clustering of low-affinity E-cadherin trans dimers at adherens junctions; thus, it was surprising that trans dimers were shown to be stable in vitro after detergent extraction. The authors have studied the formation of trans cadherin dimers in vivo by positioning cysteine residues in recombinant E-cadherin such that cross-linking by exogenously added cross-linking reagents can occur only upon trans dimerization. They show that trans dimers, which are remarkably stable in vitro, are unstable on the cell surface. Pharmacological inhibitors demonstrate that the dynamics of adherens junctions are regulated by endocytosis, which is required for the dissociation of E-cadherin trans dimers and for the replenishment of the monomeric E-cadherin pool.

Numerous recent studies have revealed a plethora of mechanistically distinct, cargo-selective endocytic pathways. Adding to the complexity are cell type–specific differences in the endocytic pathways taken by the same cargo molecules, as well as plasticity within a given cell type. Here, the authors further characterize a clathrin-, caveolin-, and dynamin-independent pathway for internalization of fluid phase markers and GPI-anchored proteins that involves the formation of tubular invaginations from the plasma membrane that pinch off to form GEECs (GPI-anchored protein–enriched endosomal compartments). The larger surface area of these endocytic vehicles may be important for efficient uptake of GPI-anchored proteins that lack cytoplasmic domains for interaction with coat proteins. GEECs are acidic compartments, perhaps allowing for dissociation of ligands (such as folate from the GPI-anchored folate receptor) and acquire Rab5 and its effector EEA1 before fusing with classical sorting endosomes bearing clathrin-mediated endocytosis–derived cargo. Whereas in HeLa cells GEEC formation requires Arf6, in the CHO and BHK cells studied here it is Arf6-independent.
IT LIKES TO BE THE CENTER OF ATTENTION.

FOCUS THE SCOPE. START BROADCASTING. THEN LET EVERYBODY ELSE JOIN IN.

MicroSuite imaging software with NetCam, combined with a BX41 microscope and DP70 digital camera, turns your pathology lab into a real-time educational or consultative webcast. Now everyone can be on the same page, whether it’s across the hospital or across the country. Another innovation...from Olympus.

olympusamerica.com/microscopes 800.446.5967

Photos courtesy of McClain Laboratories LLC

© 2006 Olympus America Inc.
Anne Ridley

Watching cells go about their business converted Anne Ridley from the viola to the microscope so it’s fitting that she was the first winner in 2000 of the British Society of Cell Biology’s Robert Hooke Medal. If Hooke, a 17th-century English polymath, is remembered at all today, it is usually for losing a bitter feud with Isaac Newton. However, it was Hooke who named the cell. Studying a section of cork through a primitive compound microscope in 1665, Hooke was reminded of monk’s cells, “cellula” in Latin and “cell” hereafter in English and wherever cell biology is spoken. And Ridley is fluent in cell biology, worldwide.

Based at the Ludwig Institute for Cancer Research in London, and active in the British Society for Cell Biology (BSCB), Ridley was elected last year to a three-year term on the ASCB Council. The ASCB is a society that she has long admired for the sheer variety and accessibility of the Annual Meeting. “The ASCB poster sessions are like walking around in a city and bumping into the most amazing people,” says Ridley. She is also taken with the strong leadership style of many American women in cell biology, such as ASCB Past-President Zena Werb and Sally Zigmond.

As a researcher, Ridley is best known today for pioneering the Rho family of GTPases, according to Laura Machesky. Machesky is now at the University of Birmingham in England. She says that it was Ridley’s work on Rho and its growing family of close relatives, first with Alan Hall and then on her own, that opened up the critical upstream molecular biology of the cell migration pathway. Cell migration is considered an area with significant clinical implications today in cancer, immune disorders, and heart disease.

Yet Ridley very nearly became a professional viola player. It was Hooke’s microscope—or at least the visual element of cell biology—that finally fired her imagination as a graduate student at the Imperial Cancer Research Fund Laboratories (ICRF) in London (now Cancer Research UK). Ridley’s 1985 undergraduate degree was in biochemistry, but her passion at Cambridge University had been music. Ridley says that she probably spent more time at Cambridge in orchestra rehearsals than in labs. “I knew I had to make a decision. I’m glad that science won, but it was close,” she says.

Tim Hunt, the Nobel laureate now with Cancer Research UK (London Research Institute), was Ridley’s “Director of Studies” at Cambridge. His first encounter with Ridley was “memorable,” Hunt recalls, but for the wrong reasons. Ridley waltzed in late to his supervisory group meeting, bringing her viola and a not very sincere apology about a university orchestra rehearsal running overtime. “Naturally I felt a little ‘dissed’ and more than a little skeptical about her prospects,” says Hunt. “But then my attitude changed dramatically.”

Each member of the supervisory group was required to present a current literature review on a research topic. Ridley did T-cell receptor cloning and left Hunt, in his own words, “flabbergasted. She absolutely mastered the topic. It was awesome.” After that, Hunt pushed and prodded Ridley toward graduate studies in biology, not music. Looking back, Hunt says, “Anne was definitely worth the effort.”

Ridley’s graduate advisor at the ICRF was Harmut Land. In his lab, she studied the GTPase Ras in cultured rat Schwann cells, stopping and starting the cell cycle by manipulating Ras. Ridley remembers, “We were making videos—films in those days—and I realized that the thing I really enjoyed was putting the cell lines under the microscopes and seeing whether they’d stopped growing. I loved watching the cells.”

Since 1993, Ridley has been at the Ludwig Institute in London, where she holds a University College London joint appointment in Biochemistry. A changing cast of 14–18 postdocs and graduate students, plus technicians at her lab, use a wide repertoire of molecular and biochemical techniques, including RNAi screening, to study the Rho family of GTPases.
Nonetheless, Ridley insists that newcomers take a good look first. “Everyone should watch and see what their cells actually do. Cells are not just buckets that you lyse open to get at the stuff inside.”

There are wonderful researchers who study “the stuff inside” lysed cells, and there are wonderful researchers who make breakthroughs from watching whole cells; but when you have someone who can do both, you have someone like Anne Ridley, says Alan Hall. Hall recently moved to New York to become the Chair of Cell Biology at the Memorial Sloan-Kettering Cancer Center. He credits Ridley’s postdoc with him in the early 1990s at the Institute of Cancer Research in London as a major stroke of “my good fortune.”

Ridley arrived in his lab just as Hall was changing directions from Ras to Rho, a submember of the Ras superfamily. In 1990, Rho was a black box protein. Hall knew only that Rho in its activated state seemed to trigger a collapse of the actin cytoskeleton in fibroblasts grown under certain conditions. With Ridley’s grounding in biochemistry—plus what Hall calls her “green fingers” for fibroblast cell culture—they closed in on Rho. By microinjecting fibroblasts with a bacterially derived enzyme that inhibits Rho, they revealed Rho’s pivotal role in actin filament assembly and organization. That work led Hall and Ridley to discover the function of Rac, the first of a whole clan of Rho relations. This family has now been linked to everything from cancer cell migration to arterial inflammation.

Ridley and Hall’s 1992 papers on Rho and Rac caused a sensation in the cell motility community, according to Gareth Jones, now at King’s College London. Jones heard Ridley present a poster on the groundbreaking experiments at a Cold Spring Harbor symposium shortly before the work’s publication. Jones recalls, “People were milling around the poster, and I was but one of many participants who recognized the huge significance of what I was seeing. After years of describing how cells moved in culture, here I was reading about the control of the molecular machinery involved.”

Ridley was the fifth of six children born to a pair of Oxfordshire petrochemists with a strong musical streak. All six Ridley children eventually took university science degrees. All six also took music lessons. “What were my parents thinking?” says Ridley with a laugh. “Six of us practicing at home! It must have been bedlam.” It must have been effective, too. Four out of six became professional scientists and although none became professional musicians, they still play music. Ridley herself is married to a professional pianist and music teacher, Edward Kay. They live in the city of St. Albans, north of London, with their two daughters, Emily, who is 13, and Rachel, who is 11. Both girls take music lessons, says their mum, but not from their parents.

Between family, lab, and commuting between them, Ridley has finally had to give up playing in London amateur orchestras. She now limits herself to strictly private chamber music sessions with friends. “We sit around and play not very difficult music. The idea is just to have fun,” she says.

Beyond the renowned researcher and the talented musician, there is yet another side to her friend, says Machesky. “When you first meet Anne, you get the impression that here is someone very quiet and reserved. But then give her a glass of beer, [and] you’ll discover that Anne has the most wicked sense of humor.”

With Ridley’s grounding in biochemistry—plus what Hall calls her “green fingers” for fibroblast cell culture—they closed in on Rho … they revealed Rho’s pivotal role in actin filament assembly and organization.

STEM CELL NICHE MODELING MACHINE

NEW INCUBATION CONCEPT FOR STEM CELLS

Offers unprecedented new ways to help perfect in vitro modeling of the stem cell niche.

Multi-variable. That’s the stem cell niche. Many factors define a niche. If you can control and optimize *in vitro* all the variables that define a niche *in vivo*, you can probably learn what really happens to stem cells that: (1) keeps them stem cells, (2) makes them mobilize, (3) homes them into new locations, (4) regulates their proliferation, and (5) guides their differentiation. That’s why everyone is so interested in modeling the stem cell niche. Co-cultures, extracellular matrix, growth factors, cytokines, etc. are a few of the variables that have been successfully used to partially model stem cell niches. However, other variables can only be provided by the incubation environment. Our unique new *XIVIVO Phenotype Incubator* provides many new incubation variables that no other incubation system on the planet can match! Check it out:

www.biospherix.com/cbn67
The Science of Diversifying Science

For over 30 years the U.S. has spent billions of public and private dollars to get more ethnic minorities into science, technology, engineering, and mathematics (STEM) majors and careers.

Sadly, the result has been a perpetually small pool of competitively eligible STEM students from underrepresented groups. And it is this small pool we compete over for our graduate programs and professions, perpetuating the status quo of too few minority scientists, engineers, physicians, etc., to meet the U.S. workforce needs.

The success of underrepresented, ethnic minorities in the University of California, Berkeley (UCB), Biology Scholars Program (BSP) over the last 14 years provides insights into what we must do differently to address underrepresentation and its toll (e.g., economic, health) on America.

BSP is a majority female (70%) and majority minority (60%) program. Since 1992, 1,400 UCB undergraduates have participated in BSP. Nine hundred of its graduates have entered graduate and professional programs.

Funded by the Howard Hughes Medical Institute and the Gordon and Betty Moore Foundation, the program aims to increase the diversity of UCB undergraduates who succeed in their biology majors and related careers. BSP shares components similar to other science diversity programs across the U.S., including study groups, paid research opportunities, academic advising, and faculty mentoring.

How successful have BSP students been? In comparison with majority students not in BSP, minority (African American, Hispanic, and Native American) BSP members have graduated with biology degrees in equivalent percentages and with equivalent final University of California GPAs; this in spite of entering UCB with lower high school GPAs and lower SATs. By their success in biology at UCB, BSP minority graduates have attained parity, closing the minority-majority performance gap.1

So what is the “BSP lesson” that will help us tackle underrepresentation in STEM? Students are most often not the problem. They do not need to be made “better.” Rather it is our programs and institutions that must change for the better.

Since diversity programs began in the 1960s, the science diversity community (including BSP) has done essentially the same traditional list of interventions and activities with students. The result? A perpetually small pool of competitively eligible minorities over which we continue to compete for our graduate programs and professions.

Some would characterize this as “insanity”—doing the same things over and over again and expecting different outcomes. How do we break this cycle and realize our goal of diversifying our STEM majors and professions?

The key point is that we have done neither (1) substantive research on what’s working, what’s not, and for whom, nor (2) have we tied funding of our work to rigorous assessment/evaluation. Why not?

In my opinion, diversity work is not treated as real work. Rather it is viewed as retrofit or adjunct to the main fabric of our disciplines. The “science” of diversity work is not taken seriously, and is not held to the same high standards of scholarship as our work at “the bench.”

Accordingly we have limped along uncritically doing the same things (“the list”) with our students, not researching what works, what doesn’t, and for whom. And we continue to receive funds for work based on outcomes that are not rigorously analyzed or evaluated. In what legitimate discipline would this occur?

In defense, some would rationalize our behavior in light of the imprecise “fuzzy” nature of diversity work. Factors often cited as “out of our control” range from the “micro” (e.g., students’ level of preparation, motivation, and/or ability) to the “macro” (e.g., historical inequities in society and our institutions).

Unfortunately, framed in this way, the focus shifts outward to what we can’t control, rather than looking at what we’re doing. Over what do we have control? What should we do? And, what resources do we need to do it?

First, we must work on understanding our diversity work through rigorous research that enlists the expertise of our social science colleagues.

Second, we must hold ourselves accountable for what we do through assessment/evaluation and tying funding to student outcomes.

To do this we need resources, not doing more of the same. We need money, training, and an interdisciplinary effort that taps the expertise of social scientists to help us do what we haven’t been trained to do as scientists—to understand what works, what doesn’t, and for whom.

Finally, and more difficult, we need the personal, political, and professional will to be self-critical regarding how our actions may or may not address the problem of underrepresentation. We must elevate program assessment and research on the effectiveness of diversity work to the status of, for example, our studies of cytoskeleton regulation.

Only then will we make STEM majors and careers accessible to all motivated and interested students. This is our challenge. This is where our real work lies.

Reference

Imaging Unlocked!

Total Internal Reflectance Fluorescence (TIRF) imaging is refined and simplified with the new Leica AM TIRF system. You can now see more than ever before with a TIRF field-of-view at least 45% larger than competitive systems. The Leica AM TIRF offers auto-alignment of the laser and a dynamic scanner that can define penetration depths, guide the direction of the evanescent field and confirm TIRF visualization, which makes the system extremely easy to use.

Starting a new lab? Beginning a new research project? Contact your local Leica representative to take advantage of big savings with Leica’s New Investigator Program!

Unlock optical brilliance and ease-of-use with complete imaging solutions from Leica Microsystems. Visit: www.leica-microsystems.com/tirf

Intelligent Automation
Leica Microsystems, Inc., 2345 Waukegan Road, Bannockburn, IL 60015
Tel. 847-405-0123, 800-248-0123, Fax 847-405-0164, In Canada call 800-205-3422
©2006 Leica Microsystems Inc., BNA246
The ASCB 46th Annual Meeting
December 9-13, San Diego, CA
Mary Beckerle, President ■ Anthony Bretscher, Program Chair ■ Arshad Desai, Local Arrangements Chair

Keynote Syposium
Saturday, December 9
Frontiers in Cell Biology—6:00 pm
Bruce Alberts, University of California, San Francisco

Elaine Fuchs, Rockefeller University/HHMI

George Q. Daley, Stem Cell Biology—10:30 am

Kevan Shokat, University of Utah

Functional Networks—8:00 am

Wednesday, December 13

From Cellular Mechanisms to Therapeutic Intervention—10:30 am

Susan Lindquist, Whitehead Institute for Biomedical Research

Christine Seidman, Harvard Medical School/HHMI

Wednesday, December 13

Functional Networks—8:00 am

Susan Manor, University of Utah

Kevan Shokat, University of California, San Francisco

Tian Xu, University of California, San Francisco

Stem Cell Biology—10:30 am

George Q. Daley, Children’s Hospital Boston

Elaine Fuchs, Rockefeller University/HHMI

Margaret Fuller, Stanford University School of Medicine

Minisymposia

Apopotosis

Edith White, Rutgers University

Junying Yuan, Harvard Medical School

Applications of Biosensors

Atsushi Miyawaki, RIKEN Brain Science Institute

Alice Ting, Massachusetts Institute of Technology

Cancer Mechanisms

Lisa Maria Costantinis, Children’s Memorial Research Center

Northwestern University Feinberg School of Medicine

Cell Cycle

Mary Davis, National Institute of Child Health & Human Development/NIH

Jonathan nurse, The Wellcome Trust/Cancer Research UK

Cell Migration

Diane L. Barber, University of California, San Francisco

Greg G. Gundersen, Columbia University College of Physicians & Surgeons

Computational Applications in Cell Biology

Douglas A. Lauffenburger, Massachusetts Institute of Technology

Alex Mogilner, University of California, Davis

Cytoskeleton, Adhesion and Disease

Kathleen J. Green, Northwestern University Feinberg School of Medicine

Alpha S.K. Yip, University of Queensland

ECM and Cell Signaling

Joan E. Schwab, Princeton University

Christopher Turner, SUNY Upstate Medical University

Endo- and Exocytosis

Todd Graham, Vanderbilt University

Margaret Scott Robinson, CIB/B/T THE Wellcome Trust

Epigenetics and Chromatin Remodeling

Peggy Farahbakhch, University of California, Davis

Andrew Feinberg, Johns Hopkins University School of Medicine

Epithelial Organization and Morphogenesis

Andrew J. McClatchey, Massachusetts General Hospital

Ulrich Tepus, University of Toronto

GTPases in Cellular Traffic

Francis Barr, Max Planck Institute of Biochemistry

Shou-Shan, California Institute of Technology

Host Pathogen Interactions

Jorge Galan, Yale University School of Medicine

Francisco Gisou van der Goot, University of California, Los Angeles

Imaging

J. Richard McIntosh, University of Colorado

Eva Nogales, University of California, Berkeley/HHMI

Immune Cell Adhesion and Recognition

Ardeshir X. Kish, Washington University School of Medicine

Colin Warren, University of Dundee

Intermediate Filaments and Disease

Don W. Cleveland, University of California, San Diego

Colin Stewart, National Cancer Institute—Frederick

Kinetochores and Centrosomes

Michel L. E. Berens, Institute Curie, Paris

Peter T. E. Steen, University of Virginia School of Medicine

Life at the Microtubule Plus End

Anna Aebi, University of Oregon/HHMI

Mechanisms of Actin Dynamics

Bruce Lundegard, Brandeis University

Darin Haney, The Burnham Institute

Mechanisms of Cell Polarity

Patrick Brennwald, University of North Carolina at Chapel Hill

Chris Q. Dey, University of Oregon/HHMI

Membrane Traffic in Disease

Esteban Carlos dell’Angelica, University of California, Los Angeles

School of Medicine

Daniel Klionsky, University of Michigan

Microtubule Motors

Erika L. Holzbauer, University of Pennsylvania

Claire E. Wieliczka, Indiana University

Motile and Sensory Cilia

Kathryn Anderson, Memorial Sloan-Kettering Cancer Center

Elizabeth F. Smith, Dartmouth College

Myosin-based Movement

Folwa Bus, Cambridge University

Aretza DeLazanne, University of Texas

Neural Degeneration and Regeneration

Zhigang He, Harvard University

Stephen Strittmatter, Yale University School of Medicine

Nuclear Pore and Traffic

Michael P. Rout, Rockefeller University

Katherine S. Ullman, University of Utah

Organelle Inheritance and Maintenance

Lisa A. Pau, Columbia University College of Physicians & Surgeons

Michael Schneider, University of Marburg

Regulation of the Cytoskeleton

Keith W. T. Burnette, University of North Carolina at Chapel Hill

Anne J. Ridley, Ludwig Institute for Cancer Research

RNA and Development

Oliver Hobert, Columbia University College of Physicians & Surgeons/HHMI

Roy Parker, University of Arizona/HHMI

Signaling in Development

Marcos Gonzalez-Gaitan, Max Planck Institute of Molecular Cell Biology & Genetics

Alexander Jenner, New York University School of Medicine/HHMI

Stem Cells

M. Kathryn Barton, Carnegie Institution of Washington

Linsheng Li, Stowers Institute of Medical Research

Syneplastin Assembly and Plasticity

Ann Marie Craig, University of British Columbia

Nancy Y. Ip, Hong Kong University of Science & Technology

For more information, contact the ASCB at (301) 347-9300, ascbinfo@ascb.org or www.ascb.org.
Neural/Glial Stem Cell Neuroscience Faculty. The University of Connecticut Health Center Department of Neuroscience, in conjunction with the State of Connecticut Stem Cell Research Program, seeks applicants for a tenure-track faculty position at the Assistant Professor level. Applicants should have research focusing on the use of stem cells for the treatment of neurodegenerative diseases and/or neurological disorders. The study of both approved human cell lines and contributions to the creation and study of non-approved lines is anticipated. Applicants are expected to have a Ph.D., M.D. or equivalent, with appropriate training in basic and translational science. We are particularly interested in applicants who will work independently, but who would also establish productive collaborations with our existing core group of cellular and molecular neurobiologists, to move basic research from the “bench to the bedside”. We envision this faculty member as a catalyst, promoting collaborative efforts that would be synergistic in nature. A generous startup package is available.

Applicants should send their curriculum vitae, statement of research interests, teaching goals and plans, electronic versions of two (2) representative publications, and three letters of reference to NeuroscienceJob@uchc.edu. Applications will be accepted until October 31, 2006.

The University of Connecticut is an Equal Opportunity/Affirmative Action Employer. Women and people from diverse racial, ethnic, and cultural backgrounds are strongly encouraged to apply.

NIH Grants.

Supplemental Research Funds to Promote Diversity. PIs holding NIH research grants can request administrative staff support to improve workforce diversity in terms of groups that have been shown to be underrepresented. http://grants.nih.gov/grants/guide/pa-files/PA-05-015.html.

Funding Opportunities Directory. The NIGMS website now offers an interactive, searchable directory to locate Institute-supported funding opportunities easily. http://search.nigms.nih.gov/funding.asp.

Minority Publication Available. The publication, 21st Century Scientists: Research Training Opportunities for Underrepresented Minorities, is now available at http://publications.nigms.nih.gov/more/. This brochure provides an overview of NIGMS’s minority programs and includes career stage programs. Printed copies also are available from the NIGMS Office of Communications and Public Liaison at info@nigms.nih.gov or (301) 496-7301.

New Investigators Program. Pathway to Independence Award program Q&A is available at http://grants.nih.gov/grants/new_investigators/qsandas.htm. The program helps investigators receive R01 awards earlier in their research careers.
MEETINGS

ASCB
Annual Meetings

2006
San Diego
December 9–13

2007
Washington, DC
December 1–5

2008
San Francisco
December 13–17

2009
San Diego
December 5–9

2010
Washington, DC
December 11–15

2011
Denver
December 3–7

October 28–31, Beijing, China

November 1–4, Nashville, TN

November 5–8, San Diego, CA

January 9–14, 2007. Goldegg, Austria
EMBO Workshop on Membrane Traffic in the Secretory Pathway. http://cwp.embo.org/w07-17

January 21–28, 2007. Brisbane/Heron Island, Australia
Workshop on the Cell Biology of the Coral-Dinoflagellate Symbiosis. weisv@science.oregonstate.edu or jpringle@stanford.edu

May 23–25, 2007. Charlottesville, VA
Morphogenesis and Regenerative Medicine Symposium at the University of Virginia. www.morphogenesis.virginia.edu/index.htm

June 27–30, 2007. Dijon, France

July 8–12, 2007. Glasgow, UK

July 15–20, 2007. Cairns, Queensland, Australia

September 1–4, 2007. Dresden, Germany
European Life Scientist Organization Annual Meeting. www.else.org

ASCB 46th Annual Meeting
Early Meeting Registration: October 3
Late Abstract Submission: October 10
Hotel Reservations: November 8
www.ascb.org

THE AMERICAN SOCIETY FOR CELL BIOLOGY
8120 Woodmont Avenue
Suite 750
Bethesda, MD 20814-2762

THE AMERICAN SOCIETY FOR CELL BIOLOGY
8120 Woodmont Avenue
Suite 750
Bethesda, MD 20814-2762

Non-profit
Organization
US Postage
PAID
Bethesda, MD
Permit No. 356