Peter Walter of the University of California, San Francisco/HHMI was elected by the ASCB membership to serve as Society President in 2016. Walter will serve on the Executive Committee as President-Elect in 2015 and will succeed Shirley M. Tilghman as President.

Gary J. Gorbsky, Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, who was running unopposed, has been elected Treasurer and will serve a three-year term. Kathleen J. Green of Northwestern University Feinberg School of Medicine has been reelected as ASCB Secretary and will serve another three-year term.

Walter Elected President for 2016

Gorbsky, Green Elected Treasurer, Secretary; Hyman, Mellman, Montell, Reck-Peterson to Serve on Council

When it comes to law making in Washington, DC, what is not included is sometimes as important as what is included. Such was the case in April when the U.S. Senate and the U.S. House of Representatives passed a bill intended to increase the accountability and transparency of federal spending. No longer in the bill were initially included restrictions on the ability of federal scientists to attend and participate in scientific meetings.

ASCB Spoke and Congress Listened

JOIN US IN PHILADELPHIA!

Submit an abstract and register early to save.

Now open at www.ascb.org/meetings

- Abstract submission
- Travel/childcare award applications
- Meeting registration
- Hotel reservations
- Room-share
- Subgroup application

See scientific program and new meeting threads on p. 18.

**Hotel rates start at $99.50* **

*for ASCB Student Members
Recognizing the profound influence that concepts and technologies from the physical and computational sciences are having on cell biology, *Molecular Biology of the Cell (MBoC)* welcomes research articles, including methods papers, in:

- Quantitative imaging
- Superresolution imaging techniques and their applications
- Biophysical properties of cells and cell structures
- Computational and mathematical modeling
- Systems studies of cell signaling and complex physiological processes
- Innovative physical or computational approaches to cell biological problems

Work in these areas is welcome at all times, but submission by June 15, 2014, may allow it to be included in the November special issue on Quantitative Biology. Results of your research will be highly visible to cell biologists, including more than 10,000 recipients of *MBoC*’s electronic tables of contents. And a printed collection of articles from the online special issue will be distributed to all attendees at the 2014 ASCB/IFCB Meeting. Leaders in the field know that *MBoC* presents conceptual advances of broad interest and high quality.

Visit www.molbiolcell.org or contact Editor-in-Chief David Drubin at mboc@ascb.org.

Submit at www.mbcpapers.org
EXECUTIVE DIRECTOR’S Column

Attention Passengers: The Mitochondria in Terminal C Will Soon Be Ready for Viewing

by Stefano Bertuzzi

Each year, Research!America, a coalition of research organizations that includes ASCB, publishes America Speaks,1 a summary of polls it conducts about perceptions that Americans have of science. The 14th edition was recently released, and it reveals several interesting trends.

A Positive Image of Science...

When asked, 43% of Americans say they would be willing to pay an extra $1 per week in taxes if they were certain this extra money would be spent for biomedical research. Twenty-three percent are not sure, while a minority (23%) are flatly opposed to the concept. In sum, people in the United States have a positive image of science and seem to understand the need for public funds to foster research and innovation.

It is possible that members of the general public assumed that this question referred to applied research or perhaps even to medical services. Nevertheless, it is comforting to know that when Americans are asked specifically if they agree that taxpayer dollars should support basic research even if it does not bring immediate benefits but advances the frontiers of knowledge, 27% strongly agree, 43% somewhat agree, 11% somewhat disagree, and 15% are not sure, while only 5% strongly disagree. So most Americans agree that basic research is necessary and that it should be funded with taxpayer dollars.

[M]ost Americans agree that basic research is necessary and that it should be funded with taxpayer dollars.

...But, Really? The Sun Revolves around the Earth?

Despite this robust support for science, when it comes to science literacy, Americans could use some brushing up. Recently, the National Science Foundation (NSF) released its new edition of the Science and Engineering Indicators,2 which contains, among other interesting data, details on the state of U.S. science education and draws on several public opinion surveys to gauge American perceptions of science.

Some of the results reported are discouraging. On average, Americans scored only 6.5 correct answers out of the nine questions on basic physical and biological science. In an earlier NSF poll,3 only 74% could correctly state that the earth revolves around the sun and not the opposite. Too often the public (including college students) perceive science as difficult because of the glut of jargon and the overemphasis on memorization in science education. A key issue involving the perception of science by the general public is the profession’s difficulty in communicating ideas simply and effectively. Scientific language can be a barrier. It can make people feel that science is hard, inaccessible, and comprehensible only to a select cadre. For too many Americans, science is an “inner club of smarties.”

Our Secret Weapon

To counter that dangerous perception and to draw the public into our science, cell biology has a secret weapon—the beauty of the cell. Under
The actin filament cytoskeleton (purple), mitochondria (yellow), and DNA (blue) in a U2OS (osteosarcoma) cell imaged by SIM. Image by Dylan Burnette and Jennifer Lippincott-Schwartz, NICHD, NIH

high magnification, the visual impact of life in all its wondrous forms, actions, and colors is disarming. This is ASCB’s motivation behind a stunning exhibit of micrographs that we are mounting in cooperation with the National Institute of General Medical Sciences (NIGMS) at Washington’s Dulles International Airport starting this June. Every year, 2.5 million people walk through the Gateway Gallery on their way to the airport’s various terminals. The gallery is lined with extra-large light boxes mounted on the walls, displaying images that cannot go unnoticed by passengers rushing to their gates.

Typically, the Gateway Gallery displays photographs of historical monuments on the National Mall or dramatic scenes along the Potomac River. But from June 4th through November, the exhibit Life: Magnified will take over and displace the Washington Monument! I am sure that our Founding Fathers would understand the importance of advancing public knowledge. They would see the wisdom of making Dulles Airport a temporary gateway into the inner world of the cell, populated by mitochondria, microtubules, bacteria, red blood cells, and other eye-popping images. Maybe the cell world will catch the eye of a passing business executive, a congressional representative, a cabinet member, or, perhaps best of all, a curious 10-year-old.

We think that this is the perfect opportunity to expose the general public to a great wonder of modern science. Simply by looking, the public can see perhaps for the first time what cell biologists have known all our working lives, that there is “grandeur in this view of life” that can be appreciated without the need to memorize names or formulas. A companion website will enable curious (or delayed) passengers to learn more about the biology behind the images.

I am particularly proud that ASCB has spearheaded this exhibit in partnership with NIGMS and with generous support from the Carl Zeiss Corporation and the Metropolitan Washington Airports Authority. The 46 images at Dulles Airport were selected by ASCB and NIGMS from over 600 submissions, many from the wonderful response we had from the ASCB membership. I would like to thank all those who submitted images. You really challenged the selection committee, which was chaired by ASCB President Jennifer Lippincott-Schwartz and NIGMS Director Jon Lorsch. Choosing only 46 from 600 high-quality still images was no easy task.

Gawking Encouraged

The idea of catching a cell biology exhibit on the way to catch a flight has already caught the attention of several science reporters, so to kick this off properly we’ve decided to hold a press conference at Dulles for the inauguration. I am pleased to announce that National Institutes of Health Director Francis Collins, NIGMS Director Jon Lorsch, and our own President Jennifer Lippincott-Schwartz will speak and guide reporters through the Life: Magnified exhibit.

Bringing cell biology from the research campus to the airport is but one step toward the greater goal of courting public support for basic science. We know that the public’s general lack of knowledge about science, scientists, and the process of science itself can have far-reaching consequences. It is never a healthy sign for a society when important issues are decided without any real understanding by the public. Today and even more tomorrow, politicians, lawyers, religious leaders, educators, and other
leaders must have a better understanding of science and technological progress to do their jobs. All of us must have a better understanding of the world on the global and the microscopic level to navigate life in the mid-21st century. ASCB offers this exhibition as a tiny step in that broader education effort. Meantime if you find yourself at Dulles Airport on leisure or business, do stop by to look at Life Magnified. As a frequent traveler through that airport, I’ve noticed that when I stop and look at the images in that gallery, others slow down to see what I am gawking at. So start a “gaper’s block” at Dulles this summer and help improve public education about the wonders—and the importance—of the cellular world.

Footnotes

Election, continued from p. 1

Elected from among eight candidates for Council are Anthony A. Hyman, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Ira Mellman, Genentech and University of California, San Francisco; Denise J. Montell, University of California, Santa Barbara; and Samara L. Reck-Peterson, Harvard Medical School. Each member of Council will serve a three-year term beginning January 1, 2015.

The ASCB thanks Ron Vale and the Nominating Committee for its service and all the nominees for their willingness to serve the Society. The Society encourages all eligible ASCB members to exercise their right to vote.

Of the ASCB eligible voting membership, 23% participated in the election this year. ■

—Thea Clarke

Are You Getting ASCB Pathways?

You should now be regularly receiving our monthly email update, ASCB Pathways—alerting you to the latest ASCB happenings and Annual Meeting updates. If you aren’t seeing the e-newsletter in your inbox, please check your spam filter, and/or contact your system administrator to whitelist *ascb.org. ■
Winning the 2013 ASCB Kaluza Prize, supported by Beckman Coulter, has been an adventure, beginning when I was unofficially notified of the award via Facebook after attempts to reach me by email and phone had failed, foiled by my email’s hyper-vigilant spam filter and my unfortunate propensity for losing track of my cell phone’s whereabouts.

The adventure continued when I learned that as part of the new exchange program between ASCB and its German counterpart, the German Society for Cell Biology (DGZ), I would be sent as ASCB’s representative to the DGZ’s annual meeting. The meeting was held at the University of Regensburg, arguably most known for having employed Pope Benedict XVI as a professor of theology in the late 1960s and ‘70s. As the name suggests, the university is located in the lovely town of Regensburg, which is listed as a UNESCO World Heritage Site. Originally settled as a Roman military camp on the Danube River (Castra Regina, or fortress on the River Regen), the city is proud of the remnants of the old fort walls that can still be seen, embedded within modern buildings.

One of the things I love about being a scientist is the fantastic opportunities to travel to meetings and experience different cultures and eat local foods. If all the people in the world were of the same gluttonous sentiment, world peace would one day be achieved through gastronomical diplomacy. At this meeting, it was half-jokingly explained to me at dinner that the German sentiment toward food can be expressed as “fleisch ist mein gemüse” (“meat is my vegetable”), which lends itself to the natural corollary, “and beer is my water.” Accordingly, I ate sausages cooked in Die Historishe Wurstkuchl, the oldest sausage kitchen in the world, and drank beer that came from Weltenburg Abbey, considered to be the oldest monastery brewery in the world.

For me, one of the highlights of the meeting was the presentations by journal representatives who came to talk about the philosophy and logistics of scientific publishing. It was enlightening to hear about publishing from the journals’ perspectives, and the presentations...
made the publishing process seem more transparent and open. Ian Mulvany from eLife gave a rousing argument against the use of the journal impact factor as a metric for scientific merit, while Bernd Pulverer, Chief Editor of The EMBO Journal, talked about the general do's and don'ts of publishing. One of the less serious things he said—citing an example of a study that was reviewed by his journal—was, “Don’t experiment on your postdocs. It is already painful enough!”

My Kaluza Prize adventure continued when I was given the opportunity to present a short talk as part of a session of prize winners. I was pleased to be able to present my graduate work done at University of Texas Southwestern Medical Center, on the role of low complexity protein sequences in the assembly of RNA granules. The other award winners were Robert Grosse, professor of pharmacology at the University of Marburg, who won the Binder Innovation Prize for work on serum-activated nuclear actin polymerization; Anjali Kusumbe, who won the Werner Risau Prize for her postdoctoral work on the coupling of angiogenesis and osteogenesis in bone; and Hans Zempe, who won the Nikon Young Scientist Award for his graduate work on Tau-mediated microtubule cleavage and will be representing the German Society for Cell Biology at the 2014 ASCB/IFCB Meeting this year in Philadelphia.

—Tina Han, University of California, San Francisco

Volunteer to Review CVs

We are always looking for more volunteers, especially ASCB members in industry, to help review cover letters, CVs, and resumes online for young ASCB scientists. If you can help, please contact Thea Clarke at tclarke@ascb.org.
“Willing to take risks” is an attribute considered to predict success in science. At the same time, women have been characterized as being averse to taking risks. If both of these premises are true, one might be tempted to conclude that most women are not promising scientists. But what does it mean to be a risk-taker, and is there a gender component to taking risks?

A Better Way to Take Risks
Imagine that you are talking with a friend about a new co-worker whom you have never met and ask, “What is he like?” If your friend responds, “Oh, he’s a real risk-taker,” what would that suggest to you? Most people would assume that the person is reckless or has a way of unnecessarily threatening his personal or financial well-being on a regular basis. Moreover, such everyday expressions imply that some people are risk-takers and some are not. In reality, however, everyone is a risk-taker because the world is rife with uncertainty and nearly every choice that we make entails some risk of negative consequences. Consider how decisions related to how we eat, whether we exercise, our choice of research topic, where we live, how we get to work, whom we marry, whether we have children, and so on all entail some risk of adversely affecting our physical health, mental health, or financial well-being. As such, successful people differ from less successful people not in whether they take risks, but in how they take risks.

Given that career-related decisions almost always entail some risk of not working out, successful people (i.e., those who usually attain their career-related goals and continue to advance) clearly cannot avoid risks. Instead, they engage in a form of risk-taking that I have dubbed “self-regulated risk-taking.” Self-regulated risk-taking contrasts with maladaptive risk-taking that involves taking unwarranted or foolish risks that have very little chance of paying off and have a high chance of adversely affecting the risk-taker’s well-being.

Know the Odds and Have a Strategy
Over the past 20–30 years, researchers have learned a few things about the characteristics of self-regulated risk-takers. The first characteristic is that they have a reasonably accurate sense of the likelihood that a particular course of action will lead to a desired outcome. I call this trait being “calibrated.” In other words, self-regulated risk-takers know the difference between options that are more likely (but not certain) to help them attain their goals and options that are not very likely to help them attain their goals. Part of this sense of the probability of success derives from a personal sense of self-efficacy (the belief that one can accomplish some goal effectively, such as writing a fundable grant proposal) and part derives from an appreciation for factors outside of one’s control (e.g., grant reviewers giving top scores to just 3 out of 25 proposals evaluated). People can err on either side of this calibration by being either too overconfident or too reticent. Overconfidence leads you to take a risk you should avoid, and underconfidence leads you to avoid taking a risk you should take.

The second trait of self-regulated risk-takers is that they are strategic in their career-related, work-related, and interpersonal decisions. To illustrate being calibrated and strategic with the same example, there are strategies that successful researchers use when they apply for grants, choose research topics, and submit journal articles. Self-regulated risk-takers choose...
Choosing to major in a STEM discipline as an undergraduate is a form of risk-taking because of the difficulty of the content, harsh grading practices in STEM courses, and lack of training in effective pedagogy in STEM faculty.

strategies that have a higher probability of success in these endeavors. For example, if a funder wants you to investigate issues X, Y, and Z in particular ways, and you choose to ignore this information, it is unlikely that your grant proposal will be funded. Notice, though, how many agencies fund less than 10% of applications, so imitating the approach of funded colleagues increases your odds of success, although the outcome is by no means certain. In this sense, writing grant proposals is a very clear form of risk-taking: You could spend a lot of time writing a proposal that ends up not being funded and could receive unnecessarily harsh criticism from un-collegial reviewers. However, successful researchers do not avoid this risk even with the small odds of success, because tenure and similar rewards often require success in obtaining grants. Rather, successful people know the odds and factor these odds into their allocation of time and juggling of responsibilities. With such low odds, it would be foolish (and risky) to devote all of one's time to writing grants and neglecting other responsibilities that also figure in the tenure evaluation, such as teaching and publishing. There are strategic ways to manage one's time and un-strategic ways. Similarly, there are strategic ways to publish and un-strategic ways. Being strategic helps reduce the uncertainty and increases the odds of being successful, but strategies are not foolproof.

Becoming a Self-Regulated Risk-Taker

The third and fourth traits of self-regulated risk-takers explain how they become more calibrated and learn how to be strategic: They seek advice and they learn from experience. Advice-seeking in the broad sense means asking for tips from successful colleagues, reading about successful strategies, and observing successful people (even without interacting with them). Learning from experience means adjusting your sense of the probability of success up or down in appropriate ways after experiencing the consequences of a decision. But such adjustment is a matter of fine-tuning and should not be taken to extremes: One should not assume that being successful on the first grant proposal that you submit means that you will always be successful on all others (and become overconfident). Conversely, having one grant rejected does not mean that the odds of being successful next time are now lower. Some folks are so risk-averse and hate failure so much that they have the maladaptive reaction of never engaging in a behavior again if they have been unsuccessful once. Recall my earlier point that successful people do not avoid risks. A key factor here again is self-efficacy, which has been shown to be strongly related to persistence.

Women in STEM Fields

We can use the foregoing analysis to help understand the underrepresentation of women in science, technology, engineering, and mathematics (STEM) fields and in leadership positions in academia and STEM-related businesses. Choosing to major in a STEM discipline as an undergraduate is a form of risk-taking because of the difficulty of the content, harsh grading practices in STEM courses, and lack of training in effective pedagogy in STEM faculty. Students have to believe that they can succeed in this kind of inhospitable environment (i.e., they have to have sufficient self-efficacy).

Self-efficacy is learned, and much depends on whether women have had positive experience and success in STEM courses prior to college. However, even if students have been successful, they also have to strongly value doing well in such a major and the careers to which these majors lead. Such values are often encouraged at home and school and internalized by students. Interestingly, biology must be doing something right, since there is essentially no gender gap in the number of biology majors.

After college, all of these factors continue to exert their influence on whether women enter graduate school to become professors or researchers, the kinds of careers they choose after graduate school, and whether they take the risk of choosing leadership positions. Mentors and role models are key factors here, because people are more likely to imitate someone if they admire that person and consider themselves similar to the person in talent and training.

Don't let people mislabel you and thus discount your potential for continued success. You are one of the best risk-takers, a self-regulated risk-taker. ■

—James P. Byrnes, Temple University
The ASCB had been concerned about the implications of travel restrictions that were first put in place in response to media revelations about the misuse of federal funds by the Internal Revenue Service and the General Services Administration for lavish employee conferences. These restrictions are included in appropriation bills that have to be renewed every year. But last November when the House of Representatives approved its original version of the Digital Accountability and Transparency (DATA) Act, it included a small provision that, had it become law, would have made the travel restrictions a permanent part of the federal code. The ASCB remains troubled by other aspects of the bill that impose burdens on universities.

In reaction to the provision in the original House of Representatives bill, the ASCB sent letters to Senate Majority Leader Harry Reid (D-NV) and Sens. Thomas Carper (D-DE), Jerry Moran, (R-KS), and Tom Harkin (D-IA). In his letters, ASCB Executive Director Stefano Bertuzzi said, “The scientific process does not take place in a vacuum. It is collaborative and depends heavily on interaction and the exchange of ideas and information that can only take place face-to-face at a scientific meeting. Not only is it important for researchers to share the results of their work with colleagues but it is critical for scientists to be able to learn what other research is taking place in their area of expertise.” In addition, ASCB Public Policy Director Kevin Wilson met with a number of congressional staff, including staff for Sen. Tom Coburn (R-OK), a vocal opponent of excessive federal spending but a strong supporter of the ability of federal scientists to travel to scientific meetings.

ASCB will stay vigilant on this issue, making it clear to Congress that all working scientists—including federal scientists—must be able to attend scientific meetings to present, hear, and argue about the latest research.

Let the Games Begin
Science Loses Round One

Congress has formally begun its annual game of funding the federal government, and fans of the sport have not been disappointed so far.

Each year, Congress begins the annual appropriations process by passing bills that outline the funding framework for the annual budget. These bills, called Budget Resolutions, allocate money to general funding areas. These funding allocations determine how much money each of the 13 specific appropriations bills can divide among individual programs, such as the U.S. National Institutes of Health (NIH) and the National Science Foundation (NSF).

The House Budget Resolution for FY15 has been debated and passed by both the House Budget Committee and the full House of Representatives. During Budget Committee deliberations, Rep. Kathy Castor (D-FL) proposed an amendment that, had it passed, would have made room in the budget for annual increases for the NIH of between $2 billion and $3 billion until 2024. The increases for the NIH would have been paid for by eliminating tax deductions for oil production and by U.S. businesses with international operations, closing loopholes in the international corporate tax system, increasing taxes on high-income individuals, and repealing certain business deductions.

In her argument in favor of the amendment, Castor said the increases would repair the cuts the NIH budget has experienced in the last two years because of sequestration. The NIH saw a budget reduction of $1.5 billion under sequestration in FY13. The FY14 budget agreement returned only $1 billion.

Committee members Bill Flores (R-TX) and Luke Messer (R-IN) led the opposition to the amendment. Flores highlighted the oft-used complaint that the NIH funds “questionable” research projects, and cited a grant examining public health education campaigns in China and one that, according to Flores, asserts a connection between the Tea Party and the tobacco industry. Flores also made the charge
that an end to wasteful spending and the elimination of duplicate research funding would provide the NIH with sufficient additional funds. Messer said he thought the funds that Castor’s amendment would provide for NIH could be spent in better ways.

Regrettably, the Castor amendment was defeated along party lines (see box). —Kevin M. Wilson

House Budget Committee Rollcall Vote on the Castor NIH Amendment

<table>
<thead>
<tr>
<th>Representative</th>
<th>Vote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rep. Ryan (R-WI)</td>
<td>NO</td>
</tr>
<tr>
<td>Rep. Price (R-GA)</td>
<td>NO</td>
</tr>
<tr>
<td>Rep. Garrett (R-NJ)</td>
<td>NO</td>
</tr>
<tr>
<td>Rep. Campbell (R-CA)</td>
<td>NO</td>
</tr>
<tr>
<td>Rep. Calvert (R-CA)</td>
<td>NO</td>
</tr>
<tr>
<td>Rep. Cole (R-OK)</td>
<td>NO</td>
</tr>
<tr>
<td>Rep. McClintock (R-CA)</td>
<td>NO</td>
</tr>
<tr>
<td>Rep. Lankford (R-OK)</td>
<td>NO</td>
</tr>
<tr>
<td>Rep. Ribble (R-WI)</td>
<td>NO</td>
</tr>
<tr>
<td>Rep. Flores (R-TX)</td>
<td>NO</td>
</tr>
<tr>
<td>Rep. Rokita (R-IN)</td>
<td>NO</td>
</tr>
<tr>
<td>Rep. Woodall (R-GA)</td>
<td>NO</td>
</tr>
<tr>
<td>Rep. Blackburn (R-TN)</td>
<td>NO</td>
</tr>
<tr>
<td>Rep. Nunnelee (R-MS)</td>
<td>NO</td>
</tr>
<tr>
<td>Rep. Rigell (R-VA)</td>
<td>NO</td>
</tr>
<tr>
<td>Rep. Hartzler (R-MO)</td>
<td>NO</td>
</tr>
<tr>
<td>Rep. Walorski (R-IN)</td>
<td>NO</td>
</tr>
<tr>
<td>Rep. Messer (R-IN)</td>
<td>NO</td>
</tr>
<tr>
<td>Rep. Rice (R-SC)</td>
<td>NO</td>
</tr>
<tr>
<td>Rep. Williams (R-TX)</td>
<td>NO</td>
</tr>
<tr>
<td>Rep. Duffy (R-WI)</td>
<td>NO</td>
</tr>
<tr>
<td>Rep. Van Hollen (D-MD)</td>
<td>YES</td>
</tr>
<tr>
<td>Rep. Yarmuth (D-KY)</td>
<td>YES</td>
</tr>
<tr>
<td>Rep. Pascrell (D-NJ)</td>
<td>YES</td>
</tr>
<tr>
<td>Rep. Ryan (D-OH)</td>
<td>YES</td>
</tr>
<tr>
<td>Rep. Moore (D-WI)</td>
<td>YES</td>
</tr>
<tr>
<td>Rep. Castor (D-FL)</td>
<td>YES</td>
</tr>
<tr>
<td>Rep. McDermott (D-WA)</td>
<td>YES</td>
</tr>
<tr>
<td>Rep. Lee (D-CA)</td>
<td>YES</td>
</tr>
<tr>
<td>Rep. Jeffries (D-NY)</td>
<td>YES</td>
</tr>
<tr>
<td>Rep. Pocan (D-WI)</td>
<td>YES</td>
</tr>
<tr>
<td>Rep. Lujan Grisham (D-NM)</td>
<td>YES</td>
</tr>
<tr>
<td>Rep. Huffman (D-CA)</td>
<td>YES</td>
</tr>
<tr>
<td>Rep. Cardenas (D-CA)</td>
<td>YES</td>
</tr>
<tr>
<td>Rep. Blumenauer (D-OR)</td>
<td>YES</td>
</tr>
<tr>
<td>Rep. Schrader (D-OR)</td>
<td>YES</td>
</tr>
<tr>
<td>Rep. Doggett (D-TX)</td>
<td>YES</td>
</tr>
<tr>
<td>Rep. Kildee (R-MI)</td>
<td>YES</td>
</tr>
</tbody>
</table>

Senate Holds “Love Affair” Hearing on NIH

Just days before the House Budget Committee questioned the value of additional funding for the U.S. National Institutes of Health (NIH), the Senate Appropriations Committee held what can best be described as a love affair hearing on the FY2015 budget for the NIH. Witnesses included NIH Director Francis Collins; National Center for Advancing Translational Sciences Director Chris Austin; National Institute of Allergy and Infectious Diseases Director Anthony Fauci; National Heart, Lung, and Blood Institute Director Gary Gibbons; National Institute of Neurological Disorders and Stroke Director Story Landis; and National Cancer Institute Director Harold Varmus.

The oversight hearing marked the final hearing on the topic for longtime NIH champion Tom Harkin (D-IA), chair of the appropriations subcommittee responsible for the NIH budget, who is not seeking reelection this year. Harkin’s opening remarks set the tone for the hearing. His comments were both reflective and cautionary. Looking back, Harkin said during his time as a member “the subcommittee has had no higher priority than to support the NIH and the scientists all across America dedicated to reducing suffering and improving public health.” He looked back on the many medical and scientific advances that have taken place at the NIH during his 25 years in the Senate.

Looking forward, the Senator expressed deep concern about the future of the NIH and biomedical research. “So this is a bittersweet moment for me,” Harkin said, “and for us who revere the work of the NIH because these great
achievements are in the past and the future leadership of the NIH is threatened by penny-wise and pound-foolish thinking by too many here in the Congress. Most in Congress are obsessed by budget deficits. I’m more concerned by our deficit of vision and ambition and leadership.”

In an effort to resolve the current budget problems, Harkin called for an end to sequestration, the across-the-board budget-cutting process that eliminated $1.5 billion in NIH funding in FY13 and could reappear in 2016. “Make no mistake,” Harkin said, “keeping sequester in place will mean a steady destructive erosion of funding in our NIH investment. It’s no longer a question of politics; it’s just a question of math.”

Senators from both political parties echoed Senator Harkin’s comments. Senator Jerry Moran (R-KS), a rising voice for the NIH, highlighted the need to keep the next generation of biomedical researchers from fleeing to other countries. He also mentioned the possibility that the United States will lose its position of world leadership in science.

Senator Barbara Mikulski (D-MD) joined in the praise of the work done by the NIH and by NIH investigators. She also called for stable and reliable funding for NIH researchers but acknowledged that the full Senate Appropriations Committee, which she chairs, may no longer be the best source of stable funding.

To listen to the whole hearing, including Sen. Harkin’s impassioned opening remarks, go to www.appropriations.senate.gov/webcast/fy15-nih-budget-request.

—Kevin M. Wilson

NIH Refines Resubmission Policy

Five years after making a major change to its policy regarding resubmission of grant applications, the National Institutes of Health (NIH) has looked at the results of the change and announced a refinement. Under the refined policy, proposals that were unsuccessful when they were resubmitted as a revision (A1) can now be submitted again as a new grant without major changes to the content and scope of the application.

In her blog, “Rock Talk,” NIH Deputy Director of Extramural Research Sally Rockey outlined the new policy and the reasons for the changes. Although the initial change to allow only one resubmission was successful in getting applications funded earlier, there were concerns in the research community that many meritorious proposals were being classified as ineligible for resubmission. In addition, both young and established investigators expressed concern about what the policy meant for them.

Rockey’s blog post announcing the change was met with a wide range of reactions, ranging from “a disaster” to “All I can say is ‘Thank heavens.’” One commenter who welcomed the change predicted a “major uptick in submissions, a corresponding decline in paylines, and some very, very busy Program Officers and grant reviewers.”

To read the complete blog announcing the policy change, go to http://nexus.od.nih.gov/all/2014/04/17/blog-on-nih-policy-notice-14-074.

—Kevin M. Wilson

CLS on Capitol Hill

The Coalition for the Life Sciences hosted a Congressional Biomedical Research Caucus on April 2. Michael Rosbash from Brandeis University presented a briefing entitled “Understanding Circadian Rhythms: Understanding Sleep Disorders.”
What are you going to do when you’re finished? Have you started looking for postdocs? Have you considered doing a postdoc with X? Where will you do your postdoc?

If you are near the end of graduate school, you probably hear these questions a lot. In fact, you may even think that a postdoc is the only logical next step after receiving your PhD. But is a postdoc right for you? Consider these questions: What are your career goals, and will a postdoc help you achieve these goals?

What Is a Postdoc?
To answer these questions, first consider another question: What exactly is a postdoc? The National Institutes of Health definition of a postdoc is “An individual who has received a doctoral degree (or equivalent) and is engaged in a temporary and defined period of mentored advanced training to enhance the professional skills and research independence needed to pursue his or her chosen career path.”

From this definition, here are some points to focus on:
- A postdoc is a temporary position. At many institutions, postdocs are in a separate employment category for temporary workers. Even though the duration of postdoc positions has lengthened considerably over the past few decades, a postdoc is not intended to be a long-term position.
- A postdoc is a mentored position. This is a transitional role that capitalizes on the abilities you have developed in graduate school, but the work is still done under the guidance of a mentor and should fit in with his/her research program and goals. A tricky, but essential, part of postdoctoral training is matching with a mentor who will help you achieve your professional goals, and this requires communication between the postdoc and the mentor from the very beginning.
- A postdoc is a training position. This is the time to develop the skills you will need for the next step in your career. Specifically, in an academic postdoc, this is the time to learn a new area or expand your technical skills. Training in writing grants and papers is also essential, so make sure you can be involved in these processes.
- A postdoc is intended to help you develop research independence. You can acquire many skills in an academic postdoc, but generally the primary focus of the position is to prepare an individual for a career in research.

Choosing the Right Postdoc
Now, what skills will you need to reach your career goals? You can achieve many goals through postdoctoral training, but careful planning is needed to make sure a postdoctoral position matches your expectations. For example, if you seek an academic research position, a postdoctoral lab that will provide mentorship and resources to help you build an independent research program is essential. If you are interested in scientific editing or writing, a postdoc where you can participate in manuscript writing, editing, and reviewing would be essential. Are you interested in teaching? If so, it will be important to determine ahead of time if this will be an option while working in your mentor’s laboratory.

And If You Don’t Do a Postdoc…?
If an academic postdoc does not sound like a match for your goals, what other options are available? Perhaps you enjoy research but know that you do not want to be an independent investigator. If so, a more technical or staff scientist position might be a better fit. If you are interested in teaching, seek out a training program with a specific emphasis on scientific education, including curriculum design and classroom instruction. Larger universities with education departments can be great resources.
for learning skills and being involved in these processes. If you are interested in industry, consider an industry postdoc, or an entry-level industry position. Industry postdocs are somewhat rare, but some organizations do offer training programs for individuals interested in careers in biotech. (And be on the lookout for opportunities like the ASCB biotech course at the Keck Graduate Institute that is being offered in June with funding from EMD Millipore.) Also, consider if you need additional training for your career goals, such as a law degree or business management training.

So, rather than “Where will you do your postdoc?” perhaps the better questions for a graduate student, or for anyone in a training position in research, are, “What are your goals? What is the next step?” One of the reasons I was initially drawn to a PhD program was the individualized path of research training, and of research itself. Similarly, the options after graduate school should be equally customized to best match the individual. Considering the increasing duration of postdoc training periods, and the increasing challenges facing the biomedical workforce, it would be an advantage to put yourself in the best possible position to reach your career goals through a post-graduation plan tailored to those goals.

So what are the next steps for you?

—Gina Razidlo, Mayo Clinic

Reprinted from the COMPASS blog, which is moderated by the ASCB Committee for Postdocs and Students. To view more blog content or contact COMPASS, visit http://ascb.org/ascbpost

ASCB Member Benefit: Publicize Your Book

Are you publishing a book? If so, let ASCB know! Send the title, publisher, ISBN information, and a thumbnail (300 dpi) of the cover. We’ll include it in the ASCB Newsletter. This publicity is available only to ASCB members. Please send submissions to Thea Clarke at tclarke@ascb.org.

The ASCB 2014 Call for Nominations

Merton Bernfield Memorial Award

Who is Eligible: An outstanding graduate student or postdoctoral fellow (at the time of nomination) who has excelled in research.

How to Apply: The student or postdoc or his or her advisor should submit a one-page research statement, a CV, a list of publications, a copy of the abstract submitted to the current year’s Annual Meeting, and the advisor’s letter of recommendation. Postdocs may also submit the recommendation of their graduate student advisor. Duplicate applications from graduate students may be submitted for the Gilula and Bernfield Memorial Awards. Nominators or self-nominators must be ASCB members.

Awards: The winner is presented a plaque, is given financial support, and will speak at a Minisymposium at the Annual Meeting. Expenses to attend the Annual Meeting are paid.

Deadline: July 15 (electronic submission to ascbinfo@ascb.org)

Norton B. Gilula Memorial Award

Who is Eligible: An outstanding graduate or undergraduate student (at the time of nomination) who has excelled in research or first-year postdocs whose work was performed while a PhD or MD/PhD student.

How to Apply: The student or advisor should submit a one-page research statement, a CV, a list of publications, if any, the abstract submitted to the current year’s Annual Meeting, and the advisor’s letter of recommendation. Duplicate applications from graduate students may be submitted for the Gilula and Bernfield Memorial Awards. Nominators or self-nominators must be ASCB members.

Awards: The winner is presented a plaque, is given financial support, and will speak at a Minisymposium at the Annual Meeting. Expenses to attend the Annual Meeting are paid.

Deadline: July 15 (electronic submission to ascbinfo@ascb.org)
ANNUAL MEETING Update

Registration and abstract submission are now open for the 2014 ASCB/IFCB Meeting in Philadelphia. See the program on p. 18 and watch the ASCB Newsletter and www.ascb.org/2014meeting for information about some of the exciting changes being introduced this year. Here is some information you may need as you begin planning your trip to Philadelphia.

The Exhibit Hall Is Now the ASCB Learning Center!
It’s time to interact in a whole new way…
We are listening to you – The ASCB is implementing a “No Fly Zone” from 12:00 -3:00 pm, Sunday-Tuesday.
What does this mean for you? During this time, all programs will be in the ASCB Learning Center: Attend special scientific presentations, visit the posters and ePoster talks, interact with exhibitors, enjoy lunch and a cash bar, plus our comfy new Power Lounge to recharge both your mobile devices and yourself.

Member-Organized Special Interest Subgroups
The ASCB has developed a new process for submitting applications for the Saturday Special Interest Subgroups that will allow organizers with similar interests to work together on one subgroup session. The application deadline is June 12. For more information visit www.ascb.org/2014meeting.
Win an Early Bird Prize!
Register by August 5 and we’ll enter you into a drawing to win one of these valuable prizes: One night room and tax at a hotel within the ASCB Block; complimentary abstract submission for the 2015 meeting in San Diego, CA, December 12–15, 2015; a $10 voucher to be used at any one of the concession stands in the Pennsylvania Convention Center; and a $5 JAVA City voucher to be used at the Pennsylvania Convention Center. For rules and guidelines, go to www.ascb.org/2014meeting and visit Registration Information.

Cost-Saving Opportunities for ASCB Student Members
• Deeply discounted hotel rates.
• Free gas from ASCB: If you are an ASCB student member, live within a 500-mile driving radius of Philadelphia, and are planning to drive to the meeting, the ASCB will reimburse your gas expenses. For more information, visit www.ascb.org/ascb2014/?page_id=8322.
• Room-share service: Fill out an application at ar.ascb.org/meetings/forms/roomshare/roomshare.cfm.
• Ride-share program: Fill out an application at ar.ascb.org/meetings/forms/rideshares-/rideshare.cfm.
• Travel Awards: Apply by September 3 at www.ascb.org/2014meeting/?page_id=8031.

New Abstract Submission Process and System
We made major changes to our abstract submission system:
• No more member sponsorship of abstracts
• Join the ASCB or renew your membership without leaving the abstract submission site (all payments go in one shopping cart)
• Tiered pricing for member and nonmember submissions
Submit your abstract at www.ascb.org/2014meeting.

More details at www.ascb.org/2014meeting
SYMPOSIA

Self Organization and the Origin of Life
Erik Karsenti, European Molecular Biology Laboratory, Heidelberg, Germany
Steven McKnight, University of Texas Southwestern Medical Center
Petra Schwille, Max Planck Institute of Biochemistry, Martinsried, Germany

Cells in Motion
Patricia Bassereau, Institut Curie, Paris, France
Clare Waterman, National Heart, Lung, and Blood Institute/NIH

Cell Structure and Signaling across Scales
Eric Betzig, Janelia Farm Research Campus/HHMI
Eva Nogales, University of California, Berkeley/HHMI/LBNL
Jeff Lichtman, Harvard University

Machinery of the Cell
Nobutaka Hirokawa, University of Tokyo, Graduate School of Medicine, Japan
Satyajit "Jitu" Mayor, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India

Life and Death in the Cell
Andrea Ballabio, Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy, and Baylor College of Medicine
Yoshinori Ohsumi, Tokyo Institute of Technology
Richard Youle, National Institute of Neurological Disorders and Stroke/NIH

Membrane Trafficking
Pietro DeCamilli, Yale University School of Medicine
Michael Kozlov, Tel Aviv University, Israel

New Perspectives on the Nucleus
Titia de Lange, Rockefeller University
Clodagh O’Shea, The Salk Institute for Biological Studies

MINISYMPOSIA TOPICS

Cytoskeleton Organization, Mechanics, and Motor Transport (3 sessions, 21 talks)
Renata Basto, Institut Curie, Paris, France
Margaret Gardel, University of Chicago
Bruce Goode, Brandeis University
Marcel Janson, Wageningen University, Netherlands
Jennifer L. Ross, University of Massachusetts, Amherst
Kristen Verhey, University of Michigan Medical School

Membrane Traffic: Dynamics and Regulation (3 sessions, 21 talks)
Arnaud Echard, Institut Pasteur, Paris, France
Volker Haucke, Leibniz-Institut für Molekulare Pharmakologie, Berlin, Germany
Cathy Jackson, Institut Jacques Monod, CNRS, and University of Paris 7, Paris, France
Ludger Johannes, Institut Curie, Paris, France
Elizabeth Miller, Columbia University
Ben Nichols, MRC Laboratory of Molecular Biology, Cambridge, UK

Stem Cells, Tissues, and Organs: From ECM/Cell Junctions to Cell Fate Determination (3 sessions, 21 talks)
Gerard Apodaca, University of Pittsburgh
Guangshuo Ou, Tsinghua University, Beijing, China
Jean E. Schwarzbauer, Princeton University
Nan Tang, National Institute of Biological Sciences, Beijing, China
Sachiko Tsukita, Osaka University, Japan

Cell Division and Cell Cycle Control (2 sessions, 14 talks)
Fred Cross, Rockefeller University
Sophie Dumont, University of California, San Francisco
Amy Gladfelter, Dartmouth College
Ahna Skop, University of Wisconsin, Madison

TRAVEL AWARDS

• Childcare
• Junior Faculty
• Postdocs
• Undergraduate Students

• Graduate Students
• International Postdocs, and Students from Developing Countries

Deadline: September 3

MEETING THREADS

Medicine
Biophysics
Professional Development
KEYNOTE SPEAKERS
spanning the origin of life to the cosmos

Steven W. Squyres
Cornell University

Robert M. Hazen
Carnegie Institution of Science and Deep Carbon Observatory

Cell Dysfunction in Cancer and Other Diseases (2 sessions, 14 talks)
Crislyn D’Souza-Schorey, University of Notre Dame
Peter Friedl, Radboud University Nijmegen, Netherlands, and The University of Texas MD Anderson Center, Houston
Michael Overholtzer, Memorial Sloan-Kettering Cancer Center
Valerie Weaver, University of California, San Francisco

Cell Signaling and Decision-Making (2 sessions, 14 talks)
Michael Dustin, The University of Oxford and Kennedy Institute of Rheumatology, Oxford, UK
Jay T. Groves, University of California, Berkeley/HHMI
Tobias Meyer, Stanford University School of Medicine
Kim Orth, University of Texas Southwestern Medical Center, Dallas

Nuclear Organization, Structure, and Dynamics (2 sessions, 14 talks)
Jason Brickner, Northwestern University
Yuh Min Chook, University of Texas Southwestern Medical Center, Dallas
Snezhana Oliferenko, King’s College London, UK
Christophe Zimmer, Institut Pasteur, Paris, France

Organelle Dynamics and Crosstalk in Health and Disease (2 sessions, 14 talks)
Madan Rao, National Centre for Biological Sciences, Tata Institute of Fundamental Research, India
Sharon A. Tooze, Cancer Research UK, London Research Institute
Ida J. van der Klei, University of Groningen, Netherlands
Roberto Zoncu, University of California, Berkeley

Cell Motion and Mechanobiology (1 session, 7 talks)
Dennis Discher, University of Pennsylvania
Ewa Paluch, University College London, UK

Cell Organization and Polarity (1 session, 7 talks)
Matthieu Piel, Institut Curie, Paris, France
Ron Li, Stowers Institute

New Ways for Probing and Interrogating Cells (1 session, 7 talks)
Jean-Christophe Olivo-Marin, Institut Pasteur, Paris, France
Manuel Thery, French Atomic Energy Research Center (CEA), Paris, France

Optical Microscopy and Superresolution Imaging (1 session, 7 talks)
Joerg Bewersdorf, Yale University
Katharina Gaus, The University of New South Wales, Sydney, Australia

Pathogens and Parasites (1 session, 7 talks)
Matthias Machner, Eunice Kennedy Shriver National Institute of Child Health and Human Development/NIH
Naomi Morrissette, University of California, Irvine

Synthetic and Chemical Biology: Reconstituting and Probing Cells (1 session, 7 talks)
Daniel A. Fletcher, University of California, Berkeley
Kinneret Keren, Technion, Israel Institute of Technology, Haifa, Israel

ABSTRACT SUBMISSION DEADLINES/FEES

AUG 5: Minisymposium talk, ePoster talk, or poster consideration; ASCB members $75, nonmembers $100
SEPT 3: Poster consideration only; ASCB members $75, nonmembers $100
OCT 16: Final for poster consideration; ASCB members $90, nonmembers $125

Abstract Sponsorship No Longer Needed!

Hotel rates start at $99.50*
for ASCB Student Members

Over 50% of speakers in 2013 were postdocs or graduate students!

ASCB members save up to 37% on registration

Details at www.ascb.org/2014meeting
The torturous weather this winter in Toronto, Canada, did not dampen the spirits of the enthusiastic graduate students, postdocs, and faculty members who gathered at Ryerson University on February 21, 2014, to participate in the ASCB-sponsored local scientific conference Know Your Partner or Face the Consequences: Exploring Cell Biology through Protein–Protein Interaction.

Not only did the conference provide trainees with invaluable opportunities to develop their scientific communication proficiency through oral and poster presentations, it acted as a platform to stimulate interdisciplinary research collaborations among the participating research institutions in the Toronto area. In addition to scientific training, the conference included an interactive career seminar with invited PhD graduates who shared their journeys to their respective jobs in academia, industry, and government.

The meeting centered on how protein–protein interactions in the nucleus, cytoplasm, and plasma membrane contribute to the dynamic regulation of cellular processes. The diverse topics covered in the conference ranged from chromatin assembly and separation to lysosomal pH control, peroxisome degradation, and clathrin-dependent and integrin-mediated signaling pathways. The keynote address was delivered by Sachdev Sidhu from the University of Toronto, who discussed the versatility of phage display technology in high-throughput protein–protein interaction screens and application toward the development of therapeutic antibodies.

The conference received overwhelmingly positive feedback from the participants. The trainees appreciated the unique opportunity to give oral presentations because it is considerably more difficult to be selected as an oral presenter in larger, international conferences. This conference provided them with the opportunity to practice, which helps fulfill one of the key missions behind organizing this event. Moreover, participants thoroughly enjoyed the career development session because it not only presented them with insights on the steps toward various career paths after the completion of a PhD, but it also served as a soothing mental break from a long day of scientific sessions.

Those of us on the organizing committee gained appreciation for the high level of organizational skills, project management, and attention to detail required to hold a scientific conference, from the planning to the execution phase. Being able to remain calm and navigate through uncertainty, such as the initial lack of registrants until the last week prior to the registration deadline and unexpected delays during the conference, was a vital learning experience for all of us.

This ASCB-sponsored event provided us with excellent practical experience in project coordination, time management, and networking, which are valuable transferrable skills that can be applied in both scientific and nonscientific settings. All of us treasured this experience and will do it again if the opportunity presents itself in the future.

—Amra Saric, Shannon Ho, Ryerson University; Alexandre Rodrigues, Fluminense Federal University, Brazil; Tim Chiu, Kevin Foley, University of Toronto
Traditionally, postdoctoral fellows transition into faculty positions at institutions of higher education where they engage in teaching, research, and service. Although they are skilled in scientific research, few postdocs receive any formal training in how to teach the science they know to other people. There is clearly a demand for such training. The ASCB-funded local meeting Bay Area Postdocs: Workshop on Scientific Teaching received over 230 applications, enough to fill the workshop five times over. The goal of the workshop, which was held on February 22, 2014, at San Francisco State University, was to engage postdoctoral fellows in a full day of learning about the principles of Scientific Teaching, an approach to education that emphasizes 1) active learning, 2) assessment, and 3) equity and diversity.

The morning session aimed to give participants a chance to experience Scientific Teaching and learn about its primary tenets. Throughout the morning session, 45 participants from eight different Bay Area institutions worked in small groups and explored the science of learning, analyzed different assessment tools, and interacted with each other to build community. The session introduced participants to common misconceptions in biology and discussed resources and teaching techniques to help students overcome these misconceptions.

The afternoon session introduced participants to careers that involve teaching through conversations with faculty from a variety of types of academic institutions, including community colleges, liberal arts colleges, research universities, and comprehensive colleges. Participants met with invited faculty including Teaster Baird, Christine De Jarlais, Michelle Igo, Jane Liu, Jeff Schinske, Julia Smith, and Kimberly Tanner. After lunch, Kimberly Tanner of San Francisco State University delivered the keynote address in which she introduced participants to a new tool for measuring biology expertise that uses a card sorting activity.

Highlights of the workshop included building a community of postdoctoral fellows deeply committed to teaching and improving their understanding of Scientific Teaching strategies. An anonymous post-workshop assessment showed that 100% of attendees felt their time was well spent, with many requesting additional opportunities to engage in training related to Scientific Teaching. This assessment also showed a 54% increase in familiarity with the active learning strategy Think-Pair-Share, one of many strategies discussed and experienced in the workshop. This evidence of learning about Scientific Teaching strategies, along with the large pool of applicants, demonstrates that San Francisco Bay Area postdoctoral fellows have a strong need and interest in acquiring training in Scientific Teaching. The organizers are grateful to the American Society for Cell Biology for funding this pioneering workshop.

— Betty Booker, University of California, San Francisco; Audrey Parangan-Smith, Shannon Seidel, and Gloriana Trujillo, San Francisco State University
Upcoming Local Meetings

ASCB is pleased to provide funds for young scientists (graduate students and postdocs) to organize one-day local meetings. Such meetings involve two or more institutions (within the United States or international), and topics can range from basic science to career development as long as there is clear relevance to the broadly defined field of cell biology.

The next deadline to apply for funds is June 1, 2014. Applicants must be or become members of the ASCB. For more information visit www.ascb.org and click on “Meetings.”

<table>
<thead>
<tr>
<th>Event Title</th>
<th>Location</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lipid Droplet Research in the Bay: From Biogenesis to Disease</td>
<td>Stanford University (Stanford, CA)</td>
<td>May 17, 2014</td>
</tr>
<tr>
<td>Quantifying Biology: Working at the Interface between Biology and Physics</td>
<td>Oregon Health and Science Center (Portland, OR)</td>
<td>May 20, 2014</td>
</tr>
<tr>
<td>Advances in 3D Cell Cultures: From Biology to Technology</td>
<td>Center of Microelectronics in Provence (Gardanne, France)</td>
<td>June 20, 2014</td>
</tr>
<tr>
<td>Workshop on Postdoctoral Training in Industry</td>
<td>University of California, Los Angeles</td>
<td>June 28, 2014</td>
</tr>
<tr>
<td>Triangle Cytoskeleton Dynamics and Regulation Meeting</td>
<td>The Research Triangle Park (Durham, NC)</td>
<td>September 12, 2014</td>
</tr>
<tr>
<td>Visualizing Cancer: Microscopy and Beyond</td>
<td>CR-UK Beatson Institute (Glasglow, United Kingdom)</td>
<td>September 2014</td>
</tr>
</tbody>
</table>

Still waiting on that great cell biology paper to get through peer review?

Then you didn’t submit it to eLIFE.

At eLife, working scientists make editorial decisions in a process that emphasizes fairness, transparency and speed.

3 DAYS
Initial decision

29 DAYS
Post-review decision

87 DAYS
Submission to acceptance

*Median times (through November 2013)

Explore the latest research and sign up for alerts at eLifesciences.org/cell-biology

Supported by:

HHMI
Howard Hughes Medical Institute

wel come trust

@eLife
facebook.com/eLifesciences
eLife.eLifesciences.org

eLife Sciences Publications, Ltd is a limited liability non-profit non-stock corporation incorporated in the State of Delaware, USA, with company number 5030732, and is registered in the UK with company number FC030576 and branch number BR015634 at the address First Floor, 24 Hills Road, Cambridge CB2 1JP.
TOP STORIES from the ASCB Post

Scientific Excess, Worms in Love, and a Chloride Ion Channel in Ciliogenesis
Visit ascb.org/ascbpost for more.

“How to Rescue U.S. Bioscience from Its Successes and Excesses”
A recent Perspective in Proceedings of the National Academy of Science by four ASCB members makes some startling recommendations on how to respond to the unsustainability of the biomedical research enterprise with regard to funding and the scientific workforce.

“How Lusty Worms Pass Love Notes through Tiny Bubbles”
A paper by ASCB member Maureen Barr in Current Biology reveals that Caenorhabditis elegans release extracellular vesicles (ECVs) that act as love notes to other worms. This is the first time ECVs have been shown to be a means of communication between separate organisms. Christina Szalinski reports.

“The Lure of the Ring—A Chloride Ion Channel Gene Makes a Surprise Appearance in Ciliogenesis”
Emory University’s Chelsey Chandler Ruppersburg and H. Criss Hartzell report in Molecular Biology of the Cell that a gene encoding a calcium-activated chloride channel has an unsuspected secret life early in the interphase of the cell cycle, John Fleischman reports.

Deputy Director, National Institute of General Medical Sciences, National Institutes of Health
The NIH is the center of medical and behavioral research for the Nation making essential medical discoveries that improve health and save lives.

Are you an exceptional candidate who can provide leadership to one of the preeminent Institutes of the National Institutes of Health?
This position offers a unique opportunity to serve as the second-in-command of the National Institute of General Medical Sciences (NIGMS) with responsibility for the execution and management of the daily operations in support of NIGMS’ strategic vision and mission. The Deputy Director works collaboratively across the NIH throughout the federal government and with other key stakeholders and organizations to further the advancement of NIGMS’ mission and objectives. He/she serves as the ambassador and spokesperson for the Institute, communicating the NIGMS’ position and incorporating the views/needs of key stakeholders into Institute plans and initiatives. The Deputy Director facilitates the identification and development of future leaders through mentoring programs, continuous development of skills and expertise, and recognition of achievements. In addition, he/she serves as a role model to the rest of the Institute, managing people and financial resources with integrity and fairness, while maintaining the Institute’s policies and priorities.

We are looking for applicants with a commitment to scientific excellence and the energy, enthusiasm and innovative thinking necessary to lead a dynamic and diverse organization. Applicants must possess an M.D. and/or Ph.D. and possess senior-level scientific research experience and outstanding scientific knowledge of research programs in one or more scientific areas related to cell biology, biophysics, genetics, developmental biology, pharmacology, physiology, biological chemistry, biomedical technology, bioinformatics, and/or computational biology. They should be known and respected within their profession, both nationally and internationally, as individuals of outstanding scientific competence. Applicants must also have demonstrated experience in setting, planning, implementing, and analyzing program objectives and priorities. He/she should have the demonstrated ability to manage financial and human resources, lead a research program involving extensive internal and external collaborations, as well as experience managing programs related to the creation of a highly skilled and diverse biomedical research workforce.

The successful candidate for this position will be appointed at a salary commensurate with experience and accomplishments, and full Federal benefits, including leave, health and life insurance, retirement and savings plan (401K equivalent).

DHHS AND NIH ARE EQUAL OPPORTUNITY EMPLOYERS

If you are ready for an exciting leadership opportunity, please see the detailed vacancy announcement for mandatory qualifications requirements and application procedures at http://www.jobs.nih.gov/ (under Executive Jobs). Applications are due by May 27, 2014.
Be Part of The Cell Community

• Sign up for a free account at The Cell so you can save images in folders for future reference: www.cellimagelibrary.org/accounts/login_prompt.
• Use the buttons on the detailed image pages to share images on Facebook, LinkedIn, StumbleUpon, and other social networks.
• Join The Cell on Facebook (www.facebook.com/cellimagelibrary) or LinkedIn (www.linkedin.com/groups?about=&gid=3739725).
• Consider donating a tweet a day to The Cell at http://justcoz.org/cellimagelibrary.
• If you have used The Cell in interesting ways or in an article or are interested in submitting images or collaborating with The Cell-CCDB, please contact David Orloff at dorloff@ncmir.ucsd.edu.
• Donate to The Cell to help it continue to grow. You can use the Donate button on the homepage.

Plate 45753 from a phenotypic profiling data set from the Broad Institute (www.cellimagelibrary.org/pages/project_20269). Phenotypic profiling attempts to summarize multiparametric, feature-based analysis of cellular phenotypes of each sample so that similarities between profiles reflect similarities between samples. This image set provides a basis for testing image-based profiling methods with respect to their ability to distinguish the effects of small molecules. The images are of U2OS cells treated with each of more than 30,000 known bioactive compounds and labeled with six labels that characterize seven organelles (the “cell-painting” assay). This experiment consists of 413 plates. Each plate has 384 wells, and each well has 9 fields of view for a total of 1,427,328 fields of view. Each field was imaged in five channels (detection wavelengths), and each channel is stored as a separate, grayscale image file, so there are approximately 7 million image files in 16-bit TIFF format. This image is in the public domain and thus free of any copyright restrictions. However, as a matter of courtesy any user is encouraged to credit the content provider for any public or private use of this image.

The Cell: An Image Library-CCDB is proud to announce the acquisition of seven million new images and the addition of a new “Data Sets (beta)” tab in the browse bar. Our first data set consists of phenotypic profiling data from the Broad Institute (see image above).

Do you receive a grant from a funder that now requires you to place your data in a public repository or to make your data publicly available? The Cell-CCDB is here to help you. We are here to assist you in placing your entire experimental data set in microscopy in a publicly available repository.

Please note that the new data sets feature is still in beta stage. Kindly let us know at dorloff@ncmir.ucsd.edu if you find anything that needs attention.

The Cell-CCDB (www.cellimagelibrary.org) is a freely accessible, easy-to-search, public repository of reviewed and annotated images, videos, and animations of cells. The Cell-CCDB was developed by ASCB under a Grand Opportunities grant from the National Institute of General Medical Sciences. It now resides at the National Center for Microscopy and Imaging Research Cell Centered Database (CCDB), which manages the Library under a perpetual license from ASCB.

—David Orloff
Auto XY Stage
Auto Focus
Auto Cell Counting
Auto Image Capture

High quality, automated imaging made simple.

With so many ways to automate cell counting and image analyses, the Cytation™3 Cell Imaging Multi-Mode Reader saves time and improves your workflow; all at a reasonable price. It can also be upgraded at any time to a Hybrid multi-mode microplate reader for enhanced flexibility and value.

To see all it can do for live cell applications, visit www.cytation3.com.
The Editorial Board of *Molecular Biology of the Cell* has highlighted the following articles from the April 2014 issues. From among the many fine articles in the journal, the Board selects for these Highlights articles that are of broad interest and significantly advance knowledge or provide new concepts or approaches that extend our understanding.

Regulation of the epithelial Ca\(^{2+}\) channel TRPV5 by reversible histidine phosphorylation mediated by NDPK-B and PHPT1

Xinjiang Cai, S. Srivastava, S. Surindran, Zhai Li, and E. Y. Skolnik

A novel mechanism is shown by which TRPV5 and Ca\(^{2+}\) reabsorption by the kidney is regulated. This supports the idea that histidine phosphorylation plays other, yet-uncovered roles in mammalian biology.

Mol. Biol. Cell 25 (8), 1244–1250

Concentration-dependent lamin assembly and its roles in the localization of other nuclear proteins

Yuxuan Guo, Youngjo Kim, Takeshi Shimi, R. D. Goldman, and Yixian Zheng

Mouse cells deleted of all or different combinations of lamins are used to show that, when expressed at sufficiently high levels, lamin-A, -B1, and -B2 can each assemble into an evenly organized nuclear lamina and ensure the even distribution of nuclear pore complexes. By contrast, only lamin-A ensures the localization of emerin.

Mol. Biol. Cell 25 (8), 1287–1297

Microtubules and actin filaments can be found in close proximity to endoplasmic reticulum (ER). Two successive 250-nm sections from HuH-7 cells were prepared using high-pressure freezing and freeze substitution and subjected to electron tomography. From the resulting tomogram, microtubules, actin filaments, and the ER network comprising tubules and highly fenestrated sheets were modeled (blue, red, and yellow, respectively). See Mol. Biol. Cell 25, 1111–1126. (Image: Ilya Belevich, Institute of Biotechnology, University of Helsinki, Finland)
A list of current grant and other opportunities can be found at www.ascb.org/grants. The following items were added since the last issue of the Newsletter:

Cultivating Cultures for Ethical STEM (CCE STEM). The National Science Foundation CCE STEM program funds research projects that identify factors that are efficacious in the formation of ethical STEM researchers. Application deadlines: June 17, 2014; February 17, 2015. www.nsf.gov/funding/pgm_summ.jsp?pims_id=505027.

Innovative Programs to Enhance Research Training (R25). The National Institute of General Medical Sciences (NIGMS) seeks applications that propose creative and innovative educational activities to complement and/or enhance the training of a workforce to meet the nation’s biomedical, behavioral, and clinical research needs, especially activities with a primary focus on courses for skills development, structured mentoring activities, and outreach program. Letter of intent deadline: 30 days before the application deadline. Application deadlines: June 9, 2014; January 25, 2015; January 25, 2016. http://grants.nih.gov/grants/guide/pa-files/PAR-14-170.html.

National Science Foundation Research Traineeship Program (NRT). The NRT program is designed to encourage the development of bold, new, potentially transformative, and scalable models for STEM graduate training that ensure that graduate students develop the skills, knowledge, and competencies needed to pursue a range of STEM careers. The NRT program initially has one priority research theme, Data-Enabled Science and Engineering; in addition, proposals are encouraged on any other crosscutting, interdisciplinary theme. Strategic collaborations with the private sector, nongovernmental organizations, government agencies, museums, and academic partners that enhance research quality and impacts and that facilitate development of technical and transferrable professional skills are encouraged. Creation of sustainable programmatic capacity at institutions is an expected outcome. Letter of intent target date: May 20, 2014. Application deadline: June 24, 2014. www.nsf.gov/funding/pgm_summ.jsp?pims_id=505015.
MEETINGS Calendar
A complete list of upcoming meetings can be found at http://ascb.org/global-meetings-calendar. The following meeting was added since the last issue of the Newsletter:

May 8–10, 2014. Cape Province, South Africa
International Cell Death Society. www.celldeath-apoptosis.org

July 6–8, 2014. Istanbul, Turkey

July 27–30, 2014. San Diego, CA
The 28th Annual Symposium of the Protein Society. www.proteinsociety.org/symposium.

September 12–15, 2014. Houston, TX

ASCB Annual Meetings
December 6–10, 2014. Philadelphia
December 12–16, 2015. San Diego
December 3–7, 2016. San Francisco
December 2–6, 2017. Philadelphia
December 8–12, 2018. San Diego

ASCB Member Comments
We welcome your comments and suggestions at ascbinfo@ascb.org

BOOKS by Members

Members in the News

Michael J. Leibowitz, of The University of California, Davis, an ASCB member since 1983, spent the month of April as visiting professor at Chang Gung University in Taiwan, where he spoke on his research on malaria and on mentorship and presented classes on responsible conduct of research, use of animals and human subjects in research, scientific writing, and career opportunities in the biomedical sciences.

Titia de Lange, of The Rockefeller University, who first joined ASCB in 1992, was one of the recipients of the Canada Gairdner International Award.

Kenneth Miller, of Brown University, an ASCB member since 1973, is the recipient of the University of Notre Dame’s Laetare Medal, regarded as the most prestigious honor given to a U.S. Catholic.

Raphael H. Valdivia, of Duke University, an ASCB member since 2000, will become the School of Medicine’s new vice dean of basic science effective July 1, 2014.
ASCB Member Gifts

The ASCB is grateful to the following donors whose contributions between April 1, 2013, and March 31, 2014, support Society activities.

<table>
<thead>
<tr>
<th>Gold ($1,000 and up)</th>
<th>Silver ($500 to $999)</th>
<th>Bronze ($250 to $499)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bruce Alberts</td>
<td>William Bement</td>
<td>Celeste Berg</td>
</tr>
<tr>
<td>Georjana Barnes</td>
<td>Kerry Bloom</td>
<td>Rebecca Boston</td>
</tr>
<tr>
<td>Stefano Bertuzzi</td>
<td>Henry Brown</td>
<td>Duane Compton</td>
</tr>
<tr>
<td>Don Cleveland</td>
<td>Jayme Dyer</td>
<td>Ronald Field</td>
</tr>
<tr>
<td>Anne Cress</td>
<td>Robert Goldman and Anne Goldman</td>
<td>Alfred Goldberg</td>
</tr>
<tr>
<td>David Drubin</td>
<td>Daniel Lew</td>
<td>Gary Gorbsky</td>
</tr>
<tr>
<td>Joseph Gall</td>
<td>Timothy Mitchison and Christine Field</td>
<td>Richard Hynes</td>
</tr>
<tr>
<td>Sandra Masur</td>
<td>Joel Rosenbaum</td>
<td>Morris Karnovsky</td>
</tr>
<tr>
<td>Tom Misteli</td>
<td>Tim Schell</td>
<td>Yuko Mimori-Kiyosue</td>
</tr>
<tr>
<td></td>
<td>Jonathan Scholey</td>
<td>W. James Nelson</td>
</tr>
<tr>
<td></td>
<td></td>
<td>John Pringle</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ValerI Vasioukhin</td>
</tr>
<tr>
<td>Hiroshi Abe</td>
<td>Alison Crowe</td>
<td></td>
</tr>
<tr>
<td>Josephine Adams</td>
<td>Maria Da Silva-Fernandes</td>
<td></td>
</tr>
<tr>
<td>Robert Adelstein</td>
<td>Mary Dasso</td>
<td></td>
</tr>
<tr>
<td>Zakiyya Ahmed</td>
<td>Dean Dawson</td>
<td></td>
</tr>
<tr>
<td>Franklin Ampy</td>
<td>Catherine Dernig</td>
<td></td>
</tr>
<tr>
<td>Suzanne Barbour</td>
<td>Dennis Discher</td>
<td></td>
</tr>
<tr>
<td>Valerie Barr</td>
<td>Miriam Domowicz</td>
<td></td>
</tr>
<tr>
<td>Lance Barton</td>
<td>Scott Dougan</td>
<td></td>
</tr>
<tr>
<td>Dulat Bekbolsynov</td>
<td>Robert Douglas</td>
<td></td>
</tr>
<tr>
<td>Alexander Bershadsky</td>
<td>Jay Dunlap</td>
<td></td>
</tr>
<tr>
<td>Gregory Bertoni</td>
<td>Jane Dunlely</td>
<td></td>
</tr>
<tr>
<td>Daphne Blumberg</td>
<td>Sharyn Endow</td>
<td></td>
</tr>
<tr>
<td>Elizabeth Brandon</td>
<td>Joyce Fernandes</td>
<td></td>
</tr>
<tr>
<td>Michael Brown</td>
<td>Yancy Ferrer</td>
<td></td>
</tr>
<tr>
<td>Keith Burridge</td>
<td>Kathy Foltz</td>
<td></td>
</tr>
<tr>
<td>Rosaleen Calvert</td>
<td>Douglass Forbes</td>
<td></td>
</tr>
<tr>
<td>Andrew Campbell</td>
<td>Janusz Franco-Barraza</td>
<td></td>
</tr>
<tr>
<td>Merri Casem</td>
<td>Dong Fu</td>
<td></td>
</tr>
<tr>
<td>J. Castle</td>
<td>Afu Fu</td>
<td></td>
</tr>
<tr>
<td>Nirupa Chaudhari</td>
<td>Brooke Gardner</td>
<td></td>
</tr>
<tr>
<td>Hui-Min Chung</td>
<td>Susan Gerbi</td>
<td></td>
</tr>
<tr>
<td>Shanna Chung</td>
<td>Michael Gleason</td>
<td></td>
</tr>
<tr>
<td>Laura Cisar</td>
<td>Leslie Gold</td>
<td></td>
</tr>
<tr>
<td>Mary Clancy</td>
<td>Todd Green</td>
<td></td>
</tr>
<tr>
<td>Judy Clark</td>
<td>Sarah Greene</td>
<td></td>
</tr>
<tr>
<td>J. Clegg</td>
<td>Guido Guidotti</td>
<td></td>
</tr>
<tr>
<td>Mary Clutter</td>
<td>Gregg Gundersen</td>
<td></td>
</tr>
<tr>
<td>Charles Cole</td>
<td>Kristetina Hegyi</td>
<td></td>
</tr>
<tr>
<td>Nathan Collie</td>
<td>Kenneth Henry</td>
<td></td>
</tr>
<tr>
<td>Lynn Cooley</td>
<td>Maryanne Herzig</td>
<td>Wilfredo Mellado</td>
</tr>
<tr>
<td>Courtney Coombes</td>
<td>Gregg Hickey</td>
<td>John Merriam</td>
</tr>
<tr>
<td></td>
<td>Jean Hugon</td>
<td>Rita Miller</td>
</tr>
<tr>
<td></td>
<td>Daryl Hurd</td>
<td>David Mitchell</td>
</tr>
<tr>
<td></td>
<td>Kristal John</td>
<td>Phillip Mitchem</td>
</tr>
<tr>
<td></td>
<td>Jacqueline Jordan</td>
<td>Marco Monroy</td>
</tr>
<tr>
<td></td>
<td>Martin Joyce-Brady</td>
<td>Catherine Moorwood</td>
</tr>
<tr>
<td></td>
<td>Mary Jung</td>
<td>Tammy Morrish</td>
</tr>
<tr>
<td></td>
<td>Alexander Kelly</td>
<td>Anthony Moss</td>
</tr>
<tr>
<td></td>
<td>Robert Koch</td>
<td>Elena Nadezhdina</td>
</tr>
<tr>
<td></td>
<td>Akhiro Kusumi</td>
<td>Heber Nielsen</td>
</tr>
<tr>
<td></td>
<td>Christian Lancot</td>
<td>Zhaoyang Niu</td>
</tr>
<tr>
<td></td>
<td>Smadar Lapidot</td>
<td>Berl Oakley</td>
</tr>
<tr>
<td></td>
<td>Lynne Lapierre</td>
<td>Pyong Woo Park</td>
</tr>
<tr>
<td></td>
<td>Janet Larkin</td>
<td>Linda Parysek</td>
</tr>
<tr>
<td></td>
<td>William Leach</td>
<td>Sally Pasion</td>
</tr>
<tr>
<td></td>
<td>James Lee</td>
<td>Jenish Patel</td>
</tr>
<tr>
<td></td>
<td>Connie Lerma</td>
<td>Sara Patterson</td>
</tr>
<tr>
<td></td>
<td>Cervantes</td>
<td>Ryan Perry</td>
</tr>
<tr>
<td></td>
<td>Faith Liebl</td>
<td>Nikolay Pestov</td>
</tr>
<tr>
<td></td>
<td>John Livesey</td>
<td>Jessica Polka</td>
</tr>
<tr>
<td></td>
<td>David Lounsbury</td>
<td>Sharon Presnell</td>
</tr>
<tr>
<td></td>
<td>Harvard Lyman</td>
<td>Richard Rachubinski</td>
</tr>
<tr>
<td></td>
<td>Zachary Mackey</td>
<td>Elizabeth Raff</td>
</tr>
<tr>
<td></td>
<td>Margaret Magendantz</td>
<td>Evelyn Ralston</td>
</tr>
<tr>
<td></td>
<td>Richard Mains</td>
<td>Jonathan Rothblatt</td>
</tr>
<tr>
<td></td>
<td>Michael Marks</td>
<td>Edward Salmon</td>
</tr>
<tr>
<td></td>
<td>Thomas Martin</td>
<td>Jean Sanger</td>
</tr>
<tr>
<td></td>
<td>J. McIntosh</td>
<td>Jaakko Saraste</td>
</tr>
<tr>
<td></td>
<td>Philip McQueen</td>
<td>William Saxton</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Got Questions?

Labby has answers. ASCB’s popular columnist will select career-related questions for publication and thoughtful response in the **ASCB Newsletter**. Confidentiality guaranteed if requested. Write us at labby@ascb.org.
Dear Labby,

I asked a colleague at my institution to collaborate because his lab has an antibody for a protein we work on. He was fine about it. We grew cells under control or experimental conditions, but because no one in my lab does immunostaining, we took the coverslips down the hall and asked my colleague to take it forward. He asked me which coverslips were the controls and which were the experimental samples. When I replied that they were coded he got upset and asked if I thought he or his lab members could not be objective. This was a very awkward moment, but he agreed to go ahead.

Afterward I got to wondering about my instinct to code the samples. Maybe it was over the top? And then I got to thinking about his reaction. Maybe he was a bit too sensitive? I think he and I are OK now, but I am still pondering this. Did I do the wrong thing?

—Cautious

Dear Cautious,

You may have erred on the side of caution, but it is good to know your colleague handled it well after his initial reaction.

Many investigators in the scenario you describe would probably not have coded the samples, and yet others would have done so. Labby suspects your colleague’s reaction was as much one of surprise as perceived insult, and the fact that he moved on is a good sign.

Your intended mode of data analysis is typically called “double blind,” but that term is misused in many cases. “Double blind” means that neither investigator knows what is what among the samples because they have been coded at the outset by someone who is not an investigator in the study. For example, in clinical research this could be a phlebotomist who takes the blood samples.

That example takes us to a key point, namely the need for blinding clinical samples in research with human subjects vs. a study such as you described. Patient safety dominates all other considerations in clinical research, and a major dimension of this protection is the assurance granted to the subjects that the study will be as rigorous as possible.

But to return to your nonclinical case, the question of whether to use coded samples is a matter of judgment. Many basic research scientists, including Labby, have used coded samples in the lab to remove observer bias. Sometimes this is done when a phenomenon has presented itself in the form of a very dim signal and the lab wants to know if it is real. Also, sometimes a lab has a tenacious belief in a certain concept and every student, research assistant, and postdoc knows that. This awareness can introduce bias, and indeed there is evidence that a “prior belief” can influence the observations of even the most objective scientists. There is a vast body of research in psychology that demonstrates our frequent inability to see contextual information in the broad range when we are preoccupied with something in a narrow mental or focal dimension. Thus it is possible for some unfortunate drivers to pull out in front of an oncoming tractor trailer after having looked “carefully” while totally absorbed in something else.

As a practical matter, when an experiment is being tried for the first time, coded samples probably are not important. The late cancer scientist Judah Folkman is said to have told his lab members one time when they were asking about blinding the samples (in a mouse, not a human study), “This is too important.” He meant that at such an early, probative stage it is possible to miss something subtle in the experimental samples if one is not aware of which samples are which. That said, replication (blinded or not) is essential. Such follow-up and (hopefully) confirmation may or may not involve coded samples.

Your instinct was not wrong in any way, although it might be atypical. Your colleague’s initial reaction was not wrong either, but on reflection he saw that your coding of the samples was not really an insult to his integrity. All good. Thank you for sharing this very interesting story.

—Labby
Frontiers in Medical Sciences: Diabetes, Cancer, and Their Connection
July 6-8, 2014
Maltepe University (Istanbul, Turkey)

Diabetes has become an epidemic that kills millions worldwide. Diabetic patients can suffer from crippling complications, ranging from kidney failure to blindness, that create economic burden and pressure on the healthcare system. This problem is projected to increase with the increasing obesity in the world population. Importantly, diabetes has been shown to be associated with different types of human cancers and is considered to be both a risk factor and a symptom of pancreatic cancer.

Plenary Lecture:
GFP: Lighting up Life by Dr. Martin Chalfie, 2008 Nobel Prize Winner

Organized by The American Society For Cell Biology International Affairs Committee and Maltepe University

Register online at: http://fims.maltepe.edu.tr
U.S. & International Grad Students & Postdocs

Win

$5000, $3000, or $1000
plus travel awards and minisymposium talks

Only ASCB members eligible
(membership starts at $42)
Join now at www.ascb.org

Apply by July 31
www.ascb.org/Kaluza.cfm

FIND US: /ascbiology @ascbiology