Tilghman Elected President for 2015
Macara, Misteli, Nunnari, Walczak to Serve on Council

Shirley M. Tilghman of Princeton University was elected by the ASCB membership to serve as Society President in 2015. Tilghman will serve on the Executive Committee as President-Elect in 2014 and will succeed Jennifer Lippincott-Schwartz as President.

Elected from among eight candidates for Council are Ian G. Macara of Vanderbilt University Medical Center; Tom Misteli of the National Cancer Institute, National Institutes of Health; Jodi Nunnari of the University of California, Davis; and Claire E. Walczak of Indiana University School of Medicine. Each member of Council will serve a three-year term beginning January 1, 2014.

The ASCB thanks Sandra Schmid and the Nominating Committee for its service and the nominees for their willingness to serve the Society. The Society encourages all eligible ASCB members to exercise their right to vote.

Of the ASCB eligible voting membership, 35.6% participated in the election this year.

—Thea Clarke
The iMIC Live Cell Microscope
One Solution for All Fluorescence Applications

The iMIC digital light microscope supports all fluorescence applications with millisecond response times. And, with its adaptable design the instrument can easily and quickly be configured to match changing experimental needs.

FEI.com/products/light-microscopy
Beefing Up ASCB’s Value for Young Scientists

There was a famous TV commercial in the ‘80s featuring a fierce old woman holding a gigantic fluffy bun wrapped around a miniscule hamburger patty. “Where’s the beef?” rasped the woman as she probed into the deceptive bun. The expression has become a proxy for addressing “value proposition,” not only in important fast food matters, but also more broadly. It’s a legitimate question to ask professional societies as well. Where’s the beef? Why should I join? What do I get for my membership? I often ask this question to remind myself that everything that we do at ASCB must offer members a precise and specific value.

The value proposition of an organization like ASCB is particularly important for the younger members who are at the core of our Society. Political scientist Robert Putnam, in his book Bowling Alone, explains that social associations—bowling leagues or gardening clubs—had their heyday in the 1960s and ’70s. But today’s young people feel that the pressure of limited time and money make such social aggregates more “expensive” than they were for previous generations. So, it’s even more important that we at ASCB ask ourselves what is the value proposition of each new initiative that the Society proposes. Everything we do at ASCB needs to justify itself as an expense of money and of time.

With this in mind, I feel confident that the new graduate student and postdoc committee authorized at the last Council meeting and now fully appointed will address a very important need and a core focus of our Society—professional development. The idea of involving graduate students and postdocs in this vital undertaking is that when we talk about training a strong workforce in cell biology and basic sciences, we have to be clear that we don’t do this to trainees, we do it with them.

So I was very pleased by the deluge of volunteers to serve on the new graduate student and postdoc committee; we received over 60 applications from an outstanding group of people. The ASCB Executive Committee (EC) had been tasked by Council with selecting chairs and approving members for the new committee. Selection was a tough job for the EC; it was not easy to choose from among such worthy candidates. In evaluating volunteers, the EC looked for a solid scientific track record, as well as demonstrated interests in science education, training, and communications. The selectors also looked for leadership skills, so that ASCB would be able to count on an active, productive, and vocal committee.

I am really pleased to announce that Jessica Polka, a postdoc from Harvard Medical School, and Theodore (Ted) Ho, a graduate student from the University of California, San Francisco, will be the first co-chairs of this important committee now named the Committee for Postdocs and Students (COMPASS). The roster of committee members and associates is on p. 5. Congratulations to all.

I look forward to meeting you in person at the Annual Meeting in New Orleans. However, we don’t need to wait until December to get to work. There is a lot to do and we can get going right now!

So, where is the beef? What should this committee deliver? I think that the committee needs to define its own agenda, within its general charge from Council. This revolves around three main themes:

[E]verything that we do at ASCB must offer members a precise and specific value.
1. Help Council and the EC develop strategies for ensuring that our scientific workforce remains strong and well trained. We need significant input from postdocs and graduate students to ensure that we can develop not just white papers—which are still very important—but also concrete projects involving demonstrations, pilot programs, etc. Some programs are already in place, e.g., the local meetings organized by postdocs and graduate students, which can be disseminated and advertised more.

2. Take ownership of and help shape some of the many career development initiatives that occur at the Annual Meeting. The 2013 ASCB Annual Meeting will emphasize professional development; President Don Cleveland and Program Chair Arshad Desai have created a specific professional training “thread” that will run through the program.

3. Work with the new ASCB Post and revamped ASCB website. As grad students and postdocs, the committee’s members live on the front lines of research and can become “embedded” reporters for ASCB communications. Their dispatches can report scientific information, overlooked news, fine details, and some of the fun stuff that makes lab life bearable. For the next generation of scientists, communicating the importance and the excitement of basic research is going to be critical for professional survival. The new ASCB Post and website can become an outlet and a training arena for those skills. The new committee can make that real.

Ted and Jessica bring a lot of excitement and new ideas to their positions as co-chairs. Ted hopes the committee will tackle a wide variety of projects, including using surveys and quantitative metrics to study the topics and issues most important to the ASCB membership; improving the availability of leadership and management training; facilitating constructive evaluation of and feedback between students and postdocs and their advisors; incentivizing and rewarding excellence in teaching, management, and mentorship; and initiating more outreach efforts to reach a wider audience to help encourage the best and brightest youth to consider studying science. “Ultimately, we simply hope to serve as an outlet for and a voice of the greater community of students and postdocs,” Ted told me when he learned of his new leadership role at ASCB. Besides being a biomedical researcher, Ted worked with star economist Richard Freeman at Harvard University using large datasets to track the contributions of basic science to innovation. Certainly Ted has the chops for carrying out the projects he is envisioning!

I could feel the enthusiasm through the phone lines when I spoke with Jessica to tell her of her new appointment. “The warm culture of the ASCB has had a tremendously positive effect on my career thus far, and I’m honored to serve the Society as it welcomes more young voices,” she said. Jessica is thinking of focusing on involving committee members in sharing the beauty of cell biology with each other and the world at large, both as a public service and as training in communicating science. She is looking forward to developing educational materials for creating biological animations, using electronic lab notebooks, editing Wikipedia, and writing about science for varied audiences on the Web.

With this great group of early career scientists, the ASCB hopes to add value for all young ASCB members. Beef or tofu, we look to them to deliver value, taste, and time. ■
Volunteer to Review CVs

We are looking for more volunteers to help review cover letters, CVs, and resumes online for young ASCB scientists. If you can help, please contact Thea Clarke at tclarke@ascb.org.
Tim Mitchison Named 2013 Porter Lecturer

A breakthrough researcher in microtubules, a founder of the field now called systems biology, and a tireless advocate for applying basic cell biology research to the tricky business of cancer therapeutics, Timothy J. Mitchison of Harvard Medical School (HMS) will give the 32nd annual Keith R. Porter Lecture at the 2013 ASCB Annual Meeting this December in New Orleans.

Mitchison’s original research focused on the microtubule and actin cytoskeletons. While still a graduate student, Mitchison worked closely with his thesis advisor, Marc Kirschner, at the University of California, San Francisco (UCSF), to propose the “dynamic instability” model as the mechanism behind microtubule growth and disassembly. In later work, Mitchison led pioneering studies of the structure, function, and dynamics of the cytoskeleton. His signature approach was using imaging-based assays for cytoskeletal dynamics in living cells and in vitro extracts. He was an early practitioner of the multiple methods approach, combing biochemical fractionation, molecular biology, and, more recently, theoretical and modeling approaches, to pile up convincing evidence for new insights into how the cytoskeleton works. Mitchison has also pursued long-standing interests in chemical biology, turning in recent years to the exciting but often frustrating work of crafting viable cancer chemotherapies directed at the mitotic spindle.

Born in 1958 in Edinburgh, Scotland, Mitchison grew up in north London, did his undergraduate degree in biochemistry at Oxford University, and completed his PhD with Kirschner at UCSF. After a brief postdoc at the National Institute for Medical Research in London, Mitchison returned to UCSF as an assistant professor in Pharmacology. In 1997, he joined his old mentor, Kirschner, on the Cell Biology faculty at HMS in Boston. When Kirschner started a new HMS Department of Systems Biology in 2004, Mitchison was a founding member. Mitchison served as ASCB President in 2010.

The Porter Lecture, named for Keith Porter, a legendary figure in electron microscopy and the driving force behind the formation of the ASCB in 1961, will be given December 15 at 6:30 pm at the New Orleans Convention Center.

—John Fleischman

Job Hunting? Hiring?

Find the perfect match at cellbiologyjobs.org

*ASCB members receive a 50% discount when posting jobs.
The MBL Physiology Course: A Magical Environment

Last March when I learned that I had been selected to participate in the Physiology Course at the Marine Biological Laboratory (MBL) in Woods Hole, MA, I remember repeatedly telling myself, “I got in!” as it dawned on me that I would be part of a long-standing scientific community with an honorable legacy.

I first learned about the MBL during my junior year in a cytoskeleton course at Mount Holyoke College. The instructor was an alumnus of the Physiology Course. Every time he shared his experience at MBL and how it changed him as a researcher, he had a look on his face and a tone in his voice that had been hard to understand. Now I would get to participate in that course myself!

It is nearly impossible to summarize my experience in the Physiology Course at MBL last summer. One cannot simply explain this life-changing experience, but I will try my best. This rigorous course instilled the motivation, curiosity, and passion to surpass any obstacle, whether it was lack of sleep, failed experiments, or a throat infection. Imagine getting to spend every day for seven weeks surrounded by people from all over the world doing science for the sake of doing science. Continue to imagine sitting in lectures and having conversations with distinguished scientists whose papers you have read at your institution’s journal club. The sense of awe and the “wake me up from this dream” effect never go away because you know you are a part of something bigger than yourself—the training of the next generation of researchers for the advancement of science.

The people I spent my summer with at MBL are my scientific family; the faculty members of the course have become guides in my scientific journey. The techniques and skills I learned in this course have increased my efficiency and productivity in my own research. If you want lasting memories, a challenge, and a chance to be part of a “science mafia” where people will bend over backwards to help you succeed, you should consider taking the Physiology Course at MBL. Only then will you feel the magical environment of the place and understand why everyone who has taken the course speaks so highly of it with a nostalgic expression and tone of voice.

—Natasha Gutierrez, Rutgers University-Newark

Note
Natasha Gutierrez is a PhD candidate in the Federated Department of Biology at Rutgers University-Newark. She attended the MBL Physiology Course with support from the ASCB’s National Institute of General Medical Sciences Minority Access to Research Careers grant.

ASCB Member Benefit: One-on-One CV Review

Need some help with a cover letter, CV, resume, statement of teaching philosophy, or other document for the next step in your career? Members of the ASCB are willing to help. Just fill out a short form (www.ascb.org), and we’ll put you in touch with a reviewer. Then the two of you can decide which digital collaboration tool to use (email, Google Docs, Skype, Wikispaces, etc.). You must be an ASCB member to take advantage of this service.

—Thea Clarke
When was the last time you looked at your cells?

Don’t just read. Visualize!

Get rich cellular resolution assays and well-based intensity readings in one small footprint. The SpectraMax® MiniMax™ Imaging Cytometer option for the SpectraMax® i3 Multi-Mode Detection Platform is specifically designed to:

- Inspect samples quickly with brightfield and fluorescent imaging
- Lower variance by normalizing readings with number of cells per well
- Satisfy plate reading and imaging workflow in one instrument

Minimize workflow hassle. Maximize time and results.

The SpectraMax i3 System (top, blue) with MiniMax™ Imaging Cytometer (bottom, orange)

Together through life sciences.

See us at Cyto 2013, Booth #802

Scan the QR code to learn more or visit www.moleculardevices.com/visualize

For research use only. Not for use in diagnostic procedures.

©2013 Molecular Devices, LLC. The SpectraMax, MiniMax, and i3 logos are the property of Molecular Devices, LLC or their respective owners.
Organizing a local scientific meeting is a highly rewarding experience. It gives you a chance to think about where your field stands and where it is headed, and it allows you to plan an entire day that is dedicated to learning about a topic that you find highly interesting. It also provides valuable networking opportunities that can lead to future collaborations and connections, all of which make organizing a meeting well worth the effort.

What Is the Topic?
The first decision in organizing a local meeting is to settle on a topic. A successful meeting requires a topic that is interesting and important enough for people to take a day off from lab to attend. For this to happen, the topic may need to be one that people don’t normally encounter, such as a novel integration of disciplines (e.g., combining cell biology with genomics) or an interesting combination of subjects (e.g., virology and evolution). An attractive and novel topic may also be critical to convincing sponsors that the meeting is worth supporting. Because the meeting will be local, confirm that the proposed topic will be of interest to enough people in the immediate vicinity to ensure a critical mass at the meeting.

Who Will Attend?
The atmosphere of the meeting will ultimately be dictated by its size and by who attends. To achieve the atmosphere you want, carefully consider the overall balance of graduate students, postdocs, and faculty. If you want graduate students who have never met before to interact, make sure there are enough slots for graduate students to attend and enough events designed for them to mingle. If you want to ensure that faculty and graduate students interact, design specific events that promote such interaction. One strategy is to have faculty give feedback on student presentations (oral or poster); another is to set up events where faculty will be seated with younger scientists and given the opportunity to engage in conversations about science.

What Is the Schedule of Events?
The schedule of the meeting is another critical factor in its success. First, decide on the events needed (talks, posters, social sessions, panel discussions, lunch, etc.), and then make a tentative program. It is often good to position the most popular speakers or events at the beginning and end of the meeting. This will draw people to the start of the meeting and help keep them around until the end. While poster sessions at the end of the meeting can be effective, such a schedule creates the risk that people who are not giving posters will leave when the posters begin. So if your meeting has a poster session, consider putting it in the middle of the day when attendance is likely to be high and arrange for the presenters to get feedback later in the day.

When and Where Will the Meeting Be Held?
Once there is a tentative program schedule, ensure that adequate space is available. This will involve evaluating the size and type of room that must be reserved for each event, as well as ensuring that any specific audio and projector needs can be met. You may find that the preliminary schedule needs to be altered due to room availability, so checking and reserving rooms must be done before the program can be finalized. Make sure you consider issues about whether food will be allowed and whether poster
boards will fit in a room prior to booking it. The date of the meeting will likely be dictated by the availability of rooms, so don’t advertise the meeting until you know that adequate space has been reserved. Make sure you avoid religious holidays and other days where attendance might be low (such as school holidays when people may be traveling). Also think carefully about whether people will have teaching or other commitments that will conflict with the date you choose.

How to Get the Word Out
If you are inviting speakers, compose email invitations explaining the details of the event and asking them to participate. Include a deadline for their response so that you have time to invite alternate speakers if needed. If the event must have a specific speaker, ask that person prior to setting the date. (A great source of the names and topics of outstanding women cell biologists is available at www.ascb.org/WICBSpeakerRef.html.)

Once you have established what type of audience you want to attend, think about how they will most easily find out about the event. Emails are probably the most effective way to ensure that people you really want to attend find out about the event. Social media outlets such as Facebook or Twitter are also good ways to spread the word. You can print posters and put them on common bulletin boards. Ask professors to make announcements in relevant classes or other meetings in the area. If you are highly motivated, start a webpage for the meeting where you can post announcements and get people excited about the event.

The Timeline
Like with any big project, don’t leave the planning to the last second! You may be disappointed to find out that you cannot reserve a room for the desired date if you leave things too long. In addition, people need advance notice to avoid scheduling conflicts. This is also true if you will be selecting abstracts for talks or posters; people need time to prepare, and you need to have a deadline that’s early enough to allow time to review the abstracts.

Funding the Meeting
Many local meetings can be run with little money. The first step is to see if there are any costs that are absolutely required so you know what the minimum cost for the meeting will be. If necessary, you can charge a small registration fee to the participants. However, you can also appeal to scientific organizations or department chairs or deans to see if they would be willing to sponsor a local meeting. If the funds needed are small, local organizations may help out. However, don’t ask for money before you have an explicit plan for the meeting and a clear justification of the costs.

Did you know about ASCB sponsorship of local meetings? The ASCB has recently committed funds for local meetings organized by students and postdocs (see sidebar).

Additional Things to Do before or at the Event
Additional things to consider include printing a program to hand out at the meeting. The rooms at the meeting need to be marked so that people can easily find them (including restrooms!). If you need a projectionist, make sure you reserve one ahead of time or ask people to send their talks to you so that there is not a lot of time wasted moving computers around. Don’t forget the microphone and a couple of pointers (one will invariably need a new battery in the middle of a talk). You may also want white boards for discussions or pads on easels each with markers, or chairs and microphones for panelists. If you are going

ASCB Support for Local Meetings
ASCB is pleased to provide funds for young scientists (graduate students and postdocs) to organize one-day local meetings. Such meetings involve two or more institutions (within the United States or international), and topics can range from basic science to career development as long as there is clear relevance to the broadly defined field of cell biology. The next deadline to apply for funds is August 1, 2013. Applicants must be or become members of the ASCB. For more information visit www.ascb.org and click on “Meetings.”
to do a survey to get feedback on the meeting, consider handing it out at the end of the meeting. Make sure you have an introduction prepared and that you thank any sponsors at the meeting.

Post-meeting Activities
Once you are done with a successful meeting, it may help to ask the attendees for feedback. You can easily create free surveys on sites such as SurveyMonkey (www.surveymonkey.com). The feedback will help improve any future meetings. In addition, you should write thank you notes to any sponsors of your meeting, as well as to the invited speakers.

Many of the suggestions discussed above are summarized in the checklist (see sidebar). Careful attention to planning will help you put on a meeting that is stimulating, productive, and fun.

Organizing and executing a local meeting is well worth the effort. You will meet new and interesting scientists in the area and may forge new collaborations. As an attendee at a recent ASCB-sponsored local meeting said, “The meeting was a great success, well-attended by trainees and PIs. At the poster session, we observed presenters saying, ‘Hey, I see a similar thing in my cell type. We should collaborate!’”

—Sue Biggins, Fred Hutchinson Cancer Research Center

Checklist for Organizing a Local Meeting

- Assemble the organizing committee
- Finalize the topic
- Determine the budget and start working on obtaining funds
- Draft a preliminary program
- Confirm dates with key speakers/attendees
- Reserve rooms, audio, etc., for a specific date
- Invite any additional speakers
- Reserve food and catering
- Advertise the meeting
- Set the registration deadline
- Invite attendees to submit abstracts for posters and/or talks
- Select speakers
- Notify attendees of the status of their abstracts
- Make and print a final program
- Confirm all rooms, catering, etc.
- Clearly mark the site with directions to events
- Distribute and collect post-meeting evaluations
- Send post-meeting thank you notes

Did You Know…?
The ASCB Job Board Helps Job-Seekers and Employers

If you’re seeking a postdoc or other position you can visit the ASCB Online Job Board to post your CV, search job announcements, apply for jobs listed, and receive email alerts when jobs matching your criteria are posted—all at no charge!

If you have a position to fill:
- Post your position on the ASCB Online Job Board by visiting http://jobboard.ascb.org and receive email updates with qualified candidates.
- Increase your exposure with the Featured Job and Featured Employer options.
- Receive a 50% discount for online job postings as an ASCB member.

Let ASCB help you.
Focus your efforts on discovery. Retain more viable cells and improve the physiological relevance of your results using **X-tremeGENE DNA Transfection Reagents**.

Free sample and protocols at www.x-tremegene.roche.com

For life science research only. Not for use in diagnostic procedures.

X-TREMEGENE is a trademark of Roche.
Hard Choices on Soft Science

A new theme is developing in Congress. Members of the Senate and House of Representatives who have not previously been vocal supporters of increased funding for basic research and the U.S. National Institutes of Health (NIH) are becoming more vocal.

The most prominent new supporter is House Majority Leader Eric Cantor. In a major domestic policy speech in February, Cantor outlined a number of domestic policy initiatives focusing on science, education, healthcare, and job training. (For details, see the March 2013 issue of the ASCB Newsletter.)

As part of his speech, the Majority Leader called for a reprioritization of research funds toward basic science. Cantor said, “Funds currently spent by the government on social science—including on politics of all things—would be better spent helping find cures to diseases.” Recent press reports indicate that Cantor will soon introduce a bill to stop federal support for “soft” social research in favor of “hard” life science research.

During Senate debate on legislation to fund the federal government for the remainder of FY13, Senator Tom Coburn (R-OK) introduced an amendment to the bill that would prohibit the National Science...
Mixed Reviews for Agency Plans to Bring Scientific Integrity to Policymaking

On the same day in 2009 that President Obama lifted restrictions on federally funded research using human embryonic stem cells, he issued an order instructing federal departments to develop internal policies that would return scientific integrity to the federal policymaking process.

Critical parts of the policies were to include protecting government scientists from politically motivated reprisals, increasing the transparency of government-funded science, and improving the quality of the government’s scientific information and advice.

In March, the Union of Concerned Scientists (UCS) issued a report analyzing the strength of the agency scientific integrity policies. Of the 22 federal agencies that have developed policies, UCS gave positive ratings to six and marginal ratings to five others. Eleven agencies received failing grades.

The National Science Foundation received high praise for its scientific communications policy, which the UCS called the strongest media policy of all the federal agencies. The Centers for Disease Control and Prevention was complimented for its data sharing policies.

The policies issued by the Departments of Energy and Health & Human Services (HHS) did not fare so well. The UCS report says that the Energy Department policy “is less than three pages long and hence has many significant gaps. [It] does not fully embrace the principles in the OSTP [Office of Science and Technology Policy] guidance memo and has many additional missing elements.”

The UCS report saves its strongest rebuke for HHS. The report says, “HHS could have set the gold standard by calling on its depth of experience with scientific integrity at the NIH. But they did not.”

To read the full report, go to www.ucsusa.org/scientific_integrity.

—Kevin M. Wilson
Research Funding: Leaving on a Jet Plane?

Research funded by the U.S. National Institutes of Health (NIH) plays an important role in the U.S. economy. Sequestration will have a devastating impact on research funds and, possibly, jobs.

Pennsylvania Representative Allyson Schwartz (D) has a solution to the current funding dilemma. She has introduced a bill that, if it were to become law, would add an additional $3 billion to the NIH budget for FY13. The bill would pay for this increase by eliminating the current special deductions for the depreciation of corporate jets. Elimination of these deductions, it is estimated, would result in about $3 billion in additional revenue each year.

Rep. Schwartz is a strong supporter of basic biomedical research and is particularly concerned about the effects sequestration-related cuts are having on the economy in Pennsylvania, which is the fourth largest state recipient of NIH funds. Estimates are that the funds the state receives each year support over 23,000 Pennsylvania jobs.

The chances are small that the Schwartz bill will ever pass. Its most important role will be to highlight the economic impact sequestration is having on biomedical research and the jobs connected with that research.

In a press release announcing the bill, Rep. Schwartz says, “Congress should choose scientific advancement and cures for disease over taxpayer support for corporate jets.”

—Kevin M. Wilson

The Coalition for the Life Sciences hosted a Congressional Biomedical Research Caucus on April 10. Krishna Shenoy from Stanford University presented a briefing entitled “Mind Over Matter.” Shenoy (right) is seen here with Rep. Jackie Speier (D-CA), one of the co-chairs of the Caucus. In addition to Rep. Speier, Reps. Charlie Dent (R-PA), Steve Stivers (R-OH), and Rush Holt (D-NJ) serve as Caucus co-chairs.
SYMPOSIA

Organelle Dynamics
Vivek Malhotra, Centre for Genomic Regulation, Barcelona
Peter Walter, University of California, San Francisco/HMMI
Beverly Wendland, Johns Hopkins University

Aneuploidy
Angelika Amon, Massachusetts Institute of Technology/HMMI
Duane Compton, Geisel School of Medicine at Dartmouth
David Pellman, Dana-Farber Cancer Institute/HMMI

The Dynamic Genome
Laura Landweber, Princeton University
Harmit Malik, Fred Hutchinson Cancer Research Center/HMMI

Cellular Machines
Tanja Baker, Massachusetts Institute of Technology/HMMI
Taekjip Ha, University of Illinois at Urbana-Champaign/HMMI

New Horizons in the Nucleus
Martin Hetzer, Salk Institute for Biological Studies
David L. Spector, Cold Spring Harbor Laboratory

FRONTIER SYMPOSIA

Cell Biology and Medicine
Bruce Spiegelman, Dana-Farber Cancer Institute/HHMI
Huda Y. Zoghbi, Baylor College of Medicine/HHMI

Physical Biology of the Cell
Philippe Cluzel, Harvard University
Frank Jülicher, Max Planck Institute for the Physics of Complex Systems
Ewa Paluch, MRC Laboratory for Molecular Cell Biology, University College London

Cytoskeletal Polymers and Motors: From Single Molecules to Ensembles
Co-Chairs: Gary Brouhard, McGill University; Rut Carballido-López, Micas Institute, INRA; Andrew Carter, MRC Laboratory of Molecular Biology; Gregory Pazour, University of Massachusetts Medical School; Margot Quinlan, University of California, Los Angeles; Torsten Wittmann, University of California, San Francisco

Three sessions covering all types of cytoskeletal proteins from prokaryotes to eukaryotes and at all scales: functional and biophysical studies of cytoskeletal filaments, their dynamics, associated proteins and motors; structure and function of cytoskeletal organelles including cilia, centrosomes, and centrioles; and cytoskeletal mechanisms underlying control of cell shape, subcellular organization, and motility. Twenty-one speakers will be selected from abstracts.

MINISYMPOSIAS TOPICS

Cell Cycle Control and Cell Division
Co-Chairs: Monica Bettencourt-Dias, Instituto Gulbenkian de Ciência; Iain Cheeseman, Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology; Michael Laub, Massachusetts Institute of Technology; Mark Petronczki, Cancer Research UK London Research Institute; Simonetta Piatti, Centre de Recherche en Biochimie Macromoléculaire; Melina Schuh, MRC Laboratory of Molecular Biology

Three sessions covering mechanisms in cell cycle control and cell division in prokaryotes and eukaryotes, including cell cycle (regulatory circuits, cell cycle evolution, checkpoints, and interplay with other aspects of cellular physiology); nuclear and cytoplasmic division (chromosome segregation, cytokinesis, and organelle partitioning); meiosis; asymmetric division; cell division in physiological and pathological conditions; and innovative tools to study these processes. Twenty-one speakers will be selected from abstracts.

Cytoskeletal Dynamics, Associated Proteins and Motors: From Single Molecules to Ensembles
Co-Chairs: Gary Brouhard, McGill University; Rut Carballido-López, Micas Institute, INRA; Andrew Carter, MRC Laboratory of Molecular Biology; Gregory Pazour, University of Massachusetts Medical School; Margot Quinlan, University of California, Los Angeles; Torsten Wittmann, University of California, San Francisco

Three sessions covering all types of cytoskeletal proteins from prokaryotes to eukaryotes and at all scales: functional and biophysical studies of cytoskeletal filaments, their dynamics, associated proteins and motors; structure and function of cytoskeletal organelles including cilia, centrosomes, and centrioles; and cytoskeletal mechanisms underlying control of cell shape, subcellular organization, and motility. Twenty-one speakers will be selected from abstracts.

Organization, Stability, and Expression of the Genome
Co-Chairs: Paula Bubulya, Wright State University; Victor Corces, Emory University; James Haber, Brandeis University; Megan C. King, Yale University; John Marko, Northwestern University; Amy Pasquinelli, University of California, San Diego

Three sessions covering mechanisms in nuclear organization and support: subnuclear positioning and higher-order structure of chromosomes, DNA replication and repair, transcription-associated chromosome breakage/arrangement, structures such as telomeres that maintain genome stability, nuclear bodies, nuclear envelope/lamina, nuclear transport, regulation of gene expression, transcription and processing of RNAs, nuclear functions for noncoding RNAs, and expression-linked changes in gene location/chromosome organization. Twenty-one speakers will be selected from abstracts.

Travel Awards
More than $140,000 has been budgeted for the 2013 Travel Awards.
* Childcare
* Junior Faculty
* Postdocs
* Undergraduate Students, Graduate Students
* Minorities

Deadline: September 4th
Meeting Opens Saturday Morning!

Two sessions covering all aspects of cancer cell biology with an emphasis on the interaction with, and response to, stromal cells and the extracellular matrix, cancer cell heterogeneity, invasion, and metastasis. Fourteen speakers will be selected from abstracts.

Cell-Cell/Cell-Matrix Interactions and Intercellular Signaling
Co-Chairs: Sally Horne-Badovinac, The University of Chicago; Johanna Ivaska, University of Turku; Rajat Rohatgi, Stanford University School of Medicine; Clare Waterman, National Heart, Lung, and Blood Institute/NIH

Two sessions covering cell–cell interactions including signaling, migration, adhesion, differentiation, morphogenesis, and higher order complexity in tissues and development, with overall emphasis on how cells interact with their environment and neighboring cells in human and animal model systems. Fourteen speakers will be selected from abstracts.

Cells Shaping Tissues: Mechanisms Underlying Cell Polarity, Fate Specification, and Morphogenesis
Co-Chairs: Anna-Katerina Hadjantonakis, Memorial Sloan-Kettering Cancer Center; Jody Rosenblatt, Huntsman Cancer Institute, University of Utah School of Medicine; Geraldine Seydoux, Johns Hopkins University School of Medicine/HHMI; Tadashi Umura, Kyoto University

Two sessions covering how cells acquire specific fates, polarity, and shapes during development, and how these properties contribute to the organization and function of tissues and organs. Analyses incorporating quantitative imaging techniques and/or modeling are welcome. Fourteen speakers will be selected from abstracts.

Organelle and Proteome Quality Control Mechanisms
Co-Chairs: Jeffrey Brodsky, University of Pittsburgh; Daniel J. Kilionys, University of Michigan, Life Sciences Institute; Alex Merz, University of Washington School of Medicine; Tricia Serio, University of Arizona

Two sessions covering mechanisms that offset the catastrophic effects of cellular stress, including checkpoints that target polypeptides for degradation by the proteasome or proteases in the lysosomes/vacuole or for refolding via molecular chaperones; proteins, lipids, and organelles that can be targeted for destruction via autophagy, shunted to cytoplasmic quality control compartments, or are inherited asymmetrically during cell division; and stress-inducible transcriptional programs that facilitate these protein triage pathways. Fourteen speakers will be selected from abstracts.

Cell Biology at the Host–Microbe Interface
Co-Chairs: Emily Troemel, University of California, San Diego; Raphael Valdivia, Duke University Medical Center

One session covering how microbes—pathogens, symbionts, and commensals—interact with and manipulate cell biological processes in their hosts, including microbial or viral manipulation of membrane traffic, cytoskeletal dynamics, or signaling pathways, with a focus on the microbial molecules responsible for such manipulations and their corresponding host targets. Seven speakers will be selected from abstracts.

Cell Biology of the Neuron: Development, Degeneration, and Regeneration
Co-Chairs: Frank Bradke, German Center for Neurogenerative Diseases (DZNE); Mei Zhen, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, and University of Toronto

One session covering cellular events for neuronal development that are recapitulated, to some degree, during degeneration and regeneration, including recent findings in the molecular and cellular mechanisms underlying the development, pathology, and regeneration of neurons in diverse model systems. Seven speakers will be selected from abstracts.

Cell Migration in Health and Disease
Co-Chairs: Erik Sahai, Cancer Research UK London Research Institute; Orion Weiner, University of California, San Francisco

One session covering the latest developments in cell migration, ranging from basic mechanisms of cell migration for single cells in vitro to the regulation of cell migration involving multiple cell types and complex matrix geometries in an organismal setting during normal cell health (immune cell function, wound healing, development) or disease (cancer metastasis). Seven speakers will be selected from abstracts.

Stem Cells and Their Niche in Tissue Homeostasis/Regeneration and Disease
Co-Chairs: Tudorita Tumbar (Doina), Cornell University; Yukiko Yamashita, University of Michigan

One session covering broad aspects of stem cell biology, with an emphasis on cell biological aspects: how stem cells are maintained, proliferate, and commit to differentiation in the context of tissue homeostasis and regeneration, and how these complex cellular processes can be perturbed in disease. Seven speakers will be selected from abstracts.

Retaining Diverse Undergraduate Students in the Biological Sciences
Co-Chairs: Anthony Koleske, Yale University School of Medicine; Omar Quintero, University of Richmond

This panel discussion, followed by open discussion, will focus on establishing learning communities and the retention of majors in STEM fields.

Cell Biology and the Physical Sciences
NEW! Professional Development

OVER
50%
of speakers in 2012 were postdocs or graduate students!

Two abstracts per sponsor (for regular, postdoctoral, and emeritus members). Undergraduate and graduate students may sponsor only their own abstract.
Cold Spring Harbor Laboratory Press announces the launch of a new monthly online publication, *Cold Spring Harbor Perspectives in Medicine*. Covering everything from the molecular and cellular bases of disease to translational medicine and new therapeutic strategies, each issue offers reviews on different aspects of a variety of diseases and the tissues they affect. The contributions are written by experts in each field and commissioned as Subject Collections by a board of eminent scientists and physicians. These Subject Collections gradually accumulate articles as new issues of the journal are published and, when complete, each Subject Collection represents a comprehensive survey of the field it covers. *Cold Spring Harbor Perspectives in Medicine* is thus unmatched for its depth of coverage and represents an essential source for informed surveys and critical discussion of advances in molecular medicine.

Scope: Translational Medicine, Molecular Pathology, Cancer Therapy, Genetics, Infectious Disease, Immunology, Molecular Cell Biology

Frequency: Monthly, online

ISSN: 2157-1422

Subject coverage includes:

- Addiction
- Aging
- Alzheimer Disease
- Anemia
- Antibiotic Resistance
- Bacterial Pathogens
- Bone Disease
- Cancer
- Cystic Fibrosis
- Diabetes
- Heart Disease
- Hemoglobin
- HIV
- Influenza
- Malaria
- Multiple Sclerosis
- Muscular Dystrophy
- Parkinson’s Disease
- Prion Diseases
- Skin Diseases
- Schizophrenia

Visit today www.cshmedicine.org

Many have signed up for a free account at The Cell. Have you? An account lets you save images in folders for future reference, and it takes less than a minute to set up: just go to www.cellimagelibrary.org/accounts/login_prompt. And don’t forget that you can share images right from the detailed image page by using the buttons just below the licensing information. These buttons allow you to share images on Facebook, LinkedIn, StumbleUpon, and other social networks. Help promote The Cell by selecting and sharing just one image.

The Cell’s Facebook page (www.facebook.com/cellImageLibrary) now has over 12,000 fans. Thank you! If you have not yet had a chance to join us, please do. Prefer LinkedIn? Join our group for more conversation on everything microscopy related at www.linkedin.com/groups?about=&gid=3733425.

Have you used The Cell in interesting ways or in an article? Are you interested in submitting images or collaborating with The Cell-CCDB? Please let us know by sending an email to David Orloff at dorloff@ncmir.ucsd.edu. All documented usage helps support our efforts to obtain continued funding.

—David Orloff

The Cell was developed by ASCB under a Grand Opportunities grant from the National Institute of General Medical Sciences. Now The Cell has moved to the National Center for Microscopy and Imaging Research Cell Centered Database (CCDB) for its day-to-day management. ASCB maintains a role in advertising the Library, soliciting images, serving as an advocate for the resource, and creating a community committed to The Cell-CCDB.
N-terminal acetylation of the yeast Derlin Der1 is essential for Hrd1 ubiquitin-ligase activity toward luminal ER substrates
D. Zattas, D. J. Adle, E. M. Rubenstein, and M. Hochstrasser

Up to 70% of yeast proteins are N-terminally acetylated, but in few cases is the function known. The NatB Nα-acetyltransferase is essential for ER-associated degradation of luminal proteins (ERAD-L). Der1, an ERAD-L cofactor of the Hrd1 ubiquitin ligase, is acetylated by NatB and is the only N-acetylation substrate crucial to ERAD-L.
Mol. Biol. Cell 24 (7), 890–900

Evidence for dynein and astral microtubule–mediated cortical release and transport of Gαi/LGN/NuMA complex in mitotic cells
Zhen Zheng, Qingwen Wan, Jing Liu, Huabin Zhu, Xiaogang Chu, and Quansheng Du

The interaction between astral microtubules and the cell cortex is accompanied by constant cortical release and transport of LGN/dynein complex, which is modulated by cortical actin filaments. Regulated cortical release and transport of LGN/dynein complex along astral microtubules may contribute to spindle positioning in mammalian cells.
Mol. Biol. Cell 24 (7), 901–913

Visualization of actin filaments and monomers in somatic cell nuclei
B. J. Belin, B. A. Cimini, E. H. Blackburn, and R. D. Mullins

Fluorescent nuclear actin reporters are used to determine the distribution of nuclear actin in live somatic cells and evaluate its potential functions. They reveal distinct monomeric and filamentous actin populations in nuclei of live somatic cells and implicate nuclear actin in mRNA processing and organization of the nucleoplasm.
Mol. Biol. Cell 24 (7), 982–994

Caenorhabditis elegans meiotic prophase I nuclei (pachytene, diakinesis-3, and diakinesis-1 stages, left to right) from wild type (top) and akir-1 mutants (bottom). The nuclei were stained with DAPI (blue, to show chromosomes) and antibodies against SYP-1 (red) and HIM-3 (green), components of the synaptonemal complex. The image shows defects in the disassembly of SYP-1 from chromosomes in the akir-1 mutant. See Mol. Biol. Cell 24, 1053–1067. (Image: Amy M. Clemons and Sarit Smolikove, Department of Biology, University of Iowa)
A Rab11a-Rab8a-Myo5B network promotes stretch-regulated exocytosis in bladder umbrella cells

Rab11a and Rab8 work in conjunction with myosin5B to promote discoidal/fusiform vesicle exocytosis at the apical surface of umbrella cells. It is predicted that similar Rab cascades will be common to other regulated secretory pathways.
Mol. Biol. Cell 24 (7), 1007–1019

akirin is required for diakinesis bivalent structure and synaptonemal complex disassembly at meiotic prophase I
A. M. Clemons, H. M. Brockway, Yizhi Yin, B. Kasinathan, Y. S. Butterfield, S. J. M. Jones, M. P. Colaiácovo, and S. Smolikove

Formation of a condensed and properly remodeled bivalent is required for accurate execution of meiosis. Meiotic roles are identified for the highly evolutionarily conserved protein AKIRIN in bivalent remodeling in a synaptonemal complex (SC)–dependent and SC–independent manner, demonstrating that proper SC disassembly is crucial for bivalent structure.

Response regulator–mediated MAPKKK heteromer promotes stress signaling to the Spc1 MAPK in fission yeast
S. Morigasaki, A. Ikner, H. Tatebe, and K. Shiozaki

A novel mechanism is uncovered by which two MAPKKKs form a heteromer to physically interact with a downstream MAPK and transmit stress signals to the Spc1 MAPK in fission yeast. Unexpectedly, the MAPKKK heteromer is stabilized by a response regulator independently of its usual function as a terminal effector of phosphorelay signaling.
Mol. Biol. Cell 24 (7), 1083–1092

Similar uptake but different trafficking and escape routes of reovirus virions and infectious subviral particles imaged in polarized Madin–Darby canine kidney cells

Four-dimensional live-cell imaging is combined with single-particle tracking to identify key steps in polarized epithelium cell entry by the prototype enteric virus reovirus.
Mol. Biol. Cell 24 (8), 1196–1207
A list of current grant and other opportunities can be found at www.ascb.org/GandO.html. The following items were added since the last issue of the Newsletter:

Functional Characterization of Oral Cancer Initiating Cells (R01). The National Institute of Dental and Craniofacial Research seeks applications for grants to facilitate translational research in oral cancers by supporting studies aimed at understanding the cellular, molecular, and functional properties of oral Cancer Initiating Cells (CICs) and their niches. The goal is to reduce knowledge gaps remaining in the understanding of oral cancer CIC biology and function, including their cellular origin; their role in endogenous tumor development and progression in vivo; the nature of OSCC-specific CIC markers; the nature of ligands and signaling pathways that control their self-renewal, proliferation, differentiation, and survival; the composition and architecture of their niches; and modes of interaction between the niches and CICs. Letters of intent due: July 15, 2013; applications due: August 15, 2013. http://grants.nih.gov/grants/guide/rfa-files/RFA-DE-14-001.html.

New York State Department of Health Investigator-Initiated Research Projects and Innovative, Developmental, or Exploratory Activities in Stem Cell Research. Applications are being considered for grants to stimulate and support basic, applied (mechanistic, technological), translational, pre-clinical and clinical scientific investigations on any aspect of stem cell biology that will lead to a better understanding of the unique properties of stem cells and allow their utilization to treat disease. Applications due: July 30, 2013. www.health.ny.gov/funding/rfa/1206180230.

Optogenetic Tools for the Study of Neural Systems in Aging and Alzheimer’s Disease (R01). The National Institute on Aging seeks applications for grants to support and promote broad applications of optogenetic tools for research on normal and/or pathological aging of neural systems including sensory, motor, cognitive, emotional, autonomic, sleep, and neurovascular, or Alzheimer’s disease (AD), as well as to encourage additional development of aging-and AD-specific optogenetic tools. Studies combining optogenetics with other cellular, molecular, genetic, neurophysiological, neuroimaging, and/or behavioral methodologies are also encouraged. Investigators may employ a wide variety of cellular systems and model organisms of aging or AD and are particularly encouraged to use mammalian systems, such as rodents and non-human primates. Letters of intent due: July 1, 2013; applications due: August 1, 2013. http://grants.nih.gov/grants/guide/rfa-files/RFA-AG-14-002.html.

Widening Implementation and Demonstration of Evidence-Based Reforms (WIDER). The National Science Foundation WIDER program seeks to transform institutions of higher education into supportive environments for STEM faculty members to substantially increase their use of evidence-based teaching and learning practices. Applicants may apply for WIDER grants to begin institutional planning efforts, to support implementation efforts for evidence-based teaching and learning practices, and for research on how to increase the importance placed on evidence-based practices in institutional strategic planning and faculty rewards. Applications due: July 3, 2013. www.nsf.gov/funding/pgm_summ.jsp?pims_id=504889.

Are You Getting ASCB Pathways?

You should now be regularly receiving our monthly email update, ASCB Pathways—alerting you to the latest ASCB happenings and Annual Meeting updates. If you aren’t seeing the e-newsletter in your inbox, please check your spam filter, and/or contact your system administrator to whitelist *ascb.org.
A complete list of upcoming meetings can be found at http://ascb.org/othermeetings.php. The following meetings were added since the last issue of the Newsletter:

May 17–22, 2013. Philadelphia, PA

May 19–22, 2013. Seoul, South Korea

June 3–7, 2013. Niagara-on-the-lake, Ontario, Canada

June 4, 2013. London, UK

June 12–15, 2013. Boston, MA

July 20–23, 2013. Snowmass Village, CO

August 4–8, 2013. Indianapolis, IN

September 12–14, 2013. Ravenna, Italy

September 21–24, 2013, Amsterdam, The Netherlands
The 5th EMBO Meeting. www.the-embo-meeting.org.

September 30–October 3, 2013. Salisbury Cove, ME

February 15–19, 2014. San Francisco, CA

MEMBERS in the News

Cori Bargmann, of the Rockefeller University, an ASCB member since 1995, was one of the recipients of the 2012 Kavli Prize in Neuroscience.

Bridget Wilson, of the University of New Mexico School of Medicine, an ASCB member since 1991, was elected a fellow of the American Association for the Advancement of Science.

ASCB Member Comments

We welcome your comments and suggestions at ascbinfo@ascb.org

The 56th Canadian Society for Molecular Biosciences annual meeting on “Cellular dynamics during development, regeneration and cancer” will take place from June 3 – 7, 2013 at White Oaks Resort and Spa, Niagara-on-the-lake, Ontario, Canada.

This meeting is aimed at bringing together experts in experimental model systems and advanced imaging platforms studying dynamics of cell behavior. The highly dynamic nature of cell biological processes makes essential and pervasive contributions to normal development, regeneration and cancer. This meeting will create an opportunity for discussing the technical and intellectual progress in this field and to highlight future challenges. Topics include, but are not limited to:

- Super resolution microscopy
- Cell polarity during development and cancer
- Cell-microenvironment interactions
- Cytoskeletal dynamics
- Neuronal morphogenesis and development
- Tissue regeneration

For more information: http://www.csmb-scbm.ca/meetings/56th_Annual_Conference.aspx
In Memoriam

Frank Ruddle (1929–2013)

Former ASCB President Frank Ruddle died on March 10. He was a mentor to many and a trailblazer in science, paving the way for human and mouse geneticists alike. He was a giant both in physical stature and in scientific contributions. We had the good fortune to train in his lab and benefit from his mentorship.

Frank was born August 19, 1929, in West New York, NJ. He was in the Air Force from 1946–1949 and, after his service to his country, he went to Wayne State University for his BA and MS degrees. He next attended the University of California, Berkeley, where he obtained his PhD in zoology in 1960. At Berkeley, he trained with Morgan Harris, and many times Frank’s students and colleagues were entertained (and instructed) by his remembrances of his graduate school experiences in the Harris lab. Frank went on to postdoctoral training at the University of Glasgow in Scotland. He obtained his first faculty position in the Biology Department at Yale University.

Yale and the Scientific Community

Frank never left Yale once he became a faculty member, and he rose through the ranks, occupying many leadership positions. He became a professor in 1972, and when we were members of the laboratory he was chair of the Department of Biology (1977–1983). His colleagues honored him by electing him to a second term as department chair from 1988–1992. At the inception of the Department of Human Genetics at Yale, Frank became a joint appointee and was a strong proponent of genetics at Yale.

He received numerous honors, including election to the National Academy of Sciences, the Institute of Medicine, and the American Academy of Arts and Sciences. His service to the scientific community was enormous. He was president of the Society for Developmental Biology in 1971, of the American Society of Human Genetics in 1985, and of the ASCB in 1987. Several institutions awarded him honorary degrees, including Lawrence University in Wisconsin, The Weizmann Institute in Israel, and his alma mater, Wayne State University.

Ground-breaking Science

His scientific contributions culminated in close to 900 publications over his long and productive career. During the 1970s, the use of somatic cell hybrids in mapping genes was a very active area of genetic research. Frank’s lab was at the forefront of this work, and he encouraged his trainees to work in this arena. He recognized the value of forming consortia with other labs to move the field forward. Frank had a major role in organizing gene mapping meetings, and as a consequence his trainees were always aware of the state of progress in chromosomal assignments. Frank took many of his lab members to the meetings that he helped organize. The opportunity to meet and interact with leaders in the field was very informative for the junior people and helped us form contacts with other scientists who were important in our career development.

In 1980, Frank’s lab created the first transgenic mouse, a ground-breaking achievement. In fact, he and postdoc Jon Gordon coined the term “transgenic.” This research led to inserting a human gene into mice and showing that it was heritable. The ability to engineer mice to express both wild-type and mutant genes is still the method of choice when modeling human genetic disease or attempting to probe the role of certain pathways in vivo. Work in Frank’s lab revolutionized the ability to study disease. His lab subsequently studied the Hox genes and demonstrated several critical roles of this complex gene family in developmental regulation.

Bringing People Together

Frank and his wife Nancy were both first-rate scientists and they served as a wonderful example for everyone in the group—especially for women in science. We were able to witness first hand their ability to combine careers in science with marriage and family life. There were many
lab celebrations and get-togethers that Frank and Nancy organized for his lab members, and these helped bring the group closer. Frank was an avid sailor and it was a special treat to be invited to go sailing with him on Long Island Sound. For at least one postdoc who got caught in a storm during one of these sailing adventures, it was a memorable experience! The Ruddle household was always open to those of us without families nearby. Many members of his lab have remained close friends and colleagues over the years.

Larger Than Life
As mentioned earlier, Frank seemed larger than life in many ways. We remember Frank as being close to 6 feet 8 inches tall. We teased him about his placement of a pencil sharpener on the wall and the location of the windows in the tissue culture rooms; they were all suited for a person his height. Once when Frank had left a pair of shoes outside his office, one of the postdocs said, “Those are not shoes, those are canoes!”

We have many good memories of our time in Frank’s lab, and many of the experiences we gained there have allowed us to fulfill our dreams of spending our lives in the pursuit of scientific inquiry. Frank was a very special scientist and human being; his memory will remain in the hearts of many.

— Leslie A. Leinwand, BioFrontiers Institute, Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, and Gretchen Darlington, Baylor College of Medicine, Houston

John Charles Hutton (1949–2013)

John Charles Hutton, Professor of Pediatrics and Cellular & Developmental Biology and Research Director of the Barbara Davis Center for Childhood Diabetes, died December 18 in Denver. He was 64.

Hutton, who joined the ASCB in 1997, was born in Australia. He earned a BSc in biochemistry and physiology in 1969 and his PhD in 1974 at the University of New South Wales. After postdocs in Bolivia and Belgium, Hutton established his own laboratory in the Department of Clinical Biochemistry at the University of Cambridge, UK, where he investigated the physical and molecular properties of the insulin secretory granule and its role in diabetes pathogenesis.

He came to the United States in 1995 as Research Director at the Barbara Davis Center, where he also made seminal contributions to our understanding of islet autoimmunity, including the identification of two proteins—IA2-β (also known as phogrin) and IGRP—that were subsequently shown to be molecular targets of human autoreactive T cells.

Most recently, Hutton demonstrated that the granule protein ZnT8 is a major target of both human T cells and autoantibodies, a discovery that has been called the most significant advance in the development of biomarkers for type 1 diabetes for over a decade.

The ASCB extends condolences to his family, friends, and colleagues.

— John Fleischman
Adolphus Toliver (1931–2013)

Adolphus “Tol” Toliver, a prominent voice at the National Institutes of Health (NIH) for active measures to support minority students and faculty pursuing careers in biology, died March 26, exactly two weeks short of his 82nd birthday. Toliver was appointed in 1994 as Chief of the Minority Access to Research Careers (MARC) Branch in the National Institute of General Medical Sciences (NIGMS), where he served until his retirement at the first of this year. Toliver was an ASCB member from 1991–2004 and served on the Society’s Minorities Affairs Committee (MAC) from 1992–1997.

Toliver earned his bachelor’s degree in biology at Washington University in St. Louis, MO, and a master’s degree and PhD in molecular biology and biochemistry at Purdue University in Lafayette, IN. He did postdoctoral research at Kansas State University and joined the faculty at the University of California, Davis, before moving to the NIH in 1975. There he served as a scientific review administrator for the Biochemistry Study Section for the NIH Division of Research Grants, now the Center for Scientific Review.

“Tol,” as he was universally known, was a familiar figure on campuses, at ASCB meetings, and at other organizational gatherings that actively supported diversity in the scientific workforce. MAC member Sandra Murray says Toliver championed the NIGMS strategy of channeling MARC grants through scientific societies such as ASCB, particularly to help minority junior faculty make the difficult transition to independent research and tenure track success. “Tol was good people,” Murray says, an “Olympian” when it came to the work and the leadership required to pull together such groups as the Annual Biomedical Research Conference for Minority Students and the Society for Advancement of Chicanos and Native Americans in Science. Toliver also had a phenomenal memory for names and faces plus the stories behind them, says David Asai, now Director for Precollege and Undergraduate Science Education at the Howard Hughes Medical Institute, who first encountered Toliver while Asai was teaching at Purdue and trying to mentor minority students himself. “What Tol did which I think was just remarkable was that he just knew a lot of (minority) students who were coming through the system. He really paid attention and was a good mentor to them. It wasn’t just their names and faces. He would see someone at an ASCB meeting for example and he would ask, ‘How’s that going? You must be in your fourth year now. What are you going to do next?’”

Asai continues, “Good eye, good memory, and he was a smart guy who just didn’t take on airs. He was just down to earth.”

The ASCB extends condolences to his family, friends, and colleagues.

— John Fleischman

Ruth G. Doell (1927–2013)

Ruth G. Doell, an ASCB member from 1964 until her retirement from the Biology Department at San Francisco State University in 1992, died February 22 at her home in El Granada, CA. She was 86.

Born in Vancouver, British Columbia, Doell earned her PhD in biochemistry from the University of California, Berkeley, in 1956 and worked as a research associate at Tufts University and then Stanford University. In 1967, she began a 25-year teaching career at San Francisco State University, where she was active in the interdisciplinary NEXA program, a curriculum that emphasized the historical, philosophical, and ethical interactions among humanities, arts, and the physical and social sciences. Her lab research centered on mouse models for viral-induced thymic lymphoma, but she was an outspoken critic of what she considered simplistic research into the biological causes of homosexuality. She also wrote on gender bias in science, contributing an essay entitled “Whose Research Is This? Values and Biology” to a 1991 anthology on feminism in academia.

The ASCB extends condolences to her family, friends, and colleagues.

— John Fleischman
Cool

Quantitative & Qualitative Data for the Total Cell Picture.

The Cytation™3 Cell Imaging Multi-Mode Reader combines conventional multi-mode detection and digital microscopy in one compact instrument. Hybrid Technology™ allows for increased assay flexibility with high precision, and full automation shortens cell counting and image analysis times. Isn’t it time you got the whole picture from your cells?

To see all it can do for cell-based applications, visit www.cytation3.com.
The ASCB 2013 Call for Nominations

Merton Bernfield Memorial Award
Who is Eligible: An outstanding graduate student or postdoctoral fellow (at the time of nomination) who has excelled in research.

How to Apply: The student or postdoc or his or her advisor should submit a one-page research statement, a CV, a list of publications, a copy of the abstract submitted to the current year’s Annual Meeting, and the advisor’s letter of recommendation. Postsdocs may also submit the recommendation of their graduate student advisor. Duplicate applications from graduate students may be submitted for the Gilula and Bernfield Memorial Awards. Nominators must be ASCB members.

Awards: The winner is presented a plaque, is given financial support, and will speak at a Minisymposium at the Annual Meeting. Expenses to attend the Annual Meeting are paid.

Deadline: July 15 (electronic submission preferred to Cheryl Lehr at clehr@ascb.org)

Norton B. Gilula Memorial Award
Who is Eligible: An outstanding graduate or undergraduate student (at the time of nomination) who has excelled in research or first-year postdocs whose work was performed while a PhD or MD/PhD student.

How to Apply: The student or advisor should submit a one-page research statement, a CV, a list of publications, if any, the abstract submitted to the current year’s Annual Meeting, and the advisor’s letter of recommendation. Duplicate applications from graduate students may be submitted for the Gilula and Bernfield Memorial Awards. Nominators must be ASCB members.

Awards: The winner is presented a plaque and a ribbon for his/her poster board. Expenses to attend the Annual Meeting are paid. Funded by an annual grant from Rockefeller University Press.

Deadline: July 15 (electronic submission preferred to Cheryl Lehr at clehr@ascb.org)

Electronic submission is preferred, but for those awards that accept nominations by mail, they may be sent to:
The American Society for Cell Biology
8120 Woodmont Avenue, Suite 750
Bethesda, MD 20814-2762, USA

For names of prior awardees or more information, visit www.ascb.org and click on “Membership” or contact the ASCB at 301-347-9300 or ascbinfo@ascb.org.

ASCB 2013 Member Gifts
The ASCB is grateful to the following donors* whose contributions support Society activities:

Gold ($1,000 and up)
Bruce Alberts
Huntington Sheldon
Kenneth Yamada

Bronze ($250-$499)
Sue Biggins

Sustainer (up to $249)
Yamac Akgun
Lance Barton
Roxalene Calvert
Silvia Corvera
Catherine Degnin
Robert Donaldson
Noelle Dwyer
Marcus Fechheimer
Peter Hornbeck
Martin Joyce-Brady
Anne Kaliczak
Stanley Kimani
Andrew Kreuz
Robert Lindner
John Macauley
Philip McQueen
Jennifer Monks
Veronica Morandi Da Silva
David Moscatello
Elena Nadezhdina
Mohandas Narla
Terry Newcomb
Caren Niessen
Josette Northcott
Laura Rhoads
Jean Sanger
Joseph Sanger
Kathy Schmeidler-Sapiro
Ruth Schmitter
Daneil Strongin
Christian Suarez
Holly Thompson
Henry Tomasiwicz
Wendy Westbroek
*as of March 31, 2013

TLED™
Transmitted Light Source

High-output white light LED!

FEATURES
• >10,000 hour lifetime
• >25μsec on-off time
• TTL control (with polarity switch)
• Very stable output
• Compact stand-alone design
• Easy installation

PHONE: 415.883.0128 | FAX: 415.883.0572
EMAIL: INFO@SUTTER.COM | WWW.SUTTER.COM
Brought to you by the American Society for Cell Biology and run entirely by scientists for scientists

IMPORTANT
MBoC presents conceptual advances of broad interest within all areas of cell biology.

INTERNATIONAL
The Editorial Board includes Associate Editors in twelve countries.

ACCESSIBLE
Each issue is freely available two months after publication. Authors’ manuscripts are posted within weeks of acceptance.

AUTHOR FRIENDLY
MBoC offers fair, rapid, constructive peer review; free color figures; and a 20% discount on page charges for ASCB members.

NOW WITH EXCITING NEW FEATURES:
- Retrospectives and Perspectives
- MBoC Technical Perspectives
- ASCB Award Essays
- ASCB Annual Meeting Highlights
- And much more

THE AMERICAN SOCIETY FOR CELL BIOLOGY

www.molbiolcell.org
PI as Non-inventor?

Dear Labby,

I am a senior (eight years post-PhD) research associate in a cell biology lab, and over the past few months I have come up with a new method that may be an actual invention. I did this project completely on my own and didn’t tell my lab head about it until I knew it was working. Although this side project of mine is not related to the aims of the federal grant that supports the lab, my PI was delighted to see these results and encouraged me to file an invention disclosure with our technology transfer office. But to my surprise, she said she was not a co-inventor. She has been a very supportive mentor over the years, and we have always co-authored our publications. I felt awkward about her position and still felt uneasy after she explained her reasoning. Another member of our department, also an ASCB member, thought I could get some advice from Labby. What is your perspective?

—Puzzled

Dear Puzzled,

Although the head of an academic laboratory, as well as other members, is often properly deemed to be a co-inventor of technology that is developed in the lab, this is not always so. The case you describe has you in the role of an enterprising scientist who, at least in this project, acted completely on your own. That you even had that opportunity in the first place suggests that your lab is an unusually nurturing environment, and the fact that your lab head has taken the position she has reflects not only a generous spirit as a mentor but also an understanding of the definition of inventorship. You state that you not only conceived of this method on your own, but carried out the studies to demonstrate its feasibility on your own. It sounds like you did not discuss this work with your lab head, or in lab meetings, in incremental steps. So her advice that you are the sole inventor is probably right.

Your technology transfer office will be another source of help as you seek to understand the definition of inventorship as it applies to this situation. And, going forward, it is possible you and your lab head will collaborate on further improvements of the technology you have developed. Her subsequent involvement might indeed constitute an inventive act. If your technology transfer office (or outside counsel) determines that there is no prior art and that your method is neither obvious nor without utility, a patent application would likely be filed. At that time, valid inventors can be added, and they can also be added in a subsequent (“continuation in part”) filing.

What has brought a smile to Labby’s face about your inquiry is that it reflects fine conduct by both you and your lab head. Your instinct was to include her and it sprung from the right sentiments, even if it was not grounded in inventorship criteria. Meanwhile, your lab head’s position was also based on a generous spirit and on a more refined knowledge of inventorship. So this is really a very good story, and both of you deserve compliments.

—Labby

Got Questions?

Labby has answers. ASCB’s popular columnist will select career-related questions for publication and thoughtful response in the ASCB Newsletter. Confidentiality guaranteed if requested. Write us at labby@ascb.org.
The new ascb.org

New look. New content.

Read the latest science news at the new ASCB Post, or keep your finger on the pulse of science and science policy with Activation Energy, the new blog by ASCB Executive Director Stefano Bertuzzi.

Bookmark and visit ascb.org often and see how we're changing.
LSE emphasizes teaching innovations and evidence for their effectiveness. It publishes original research articles, essays, and features that help you apply education research to your own teaching.