Christina Szalinski

Christina Szalinski

Christina is a science writer for the American Society for Cell Biology. She earned her Ph.D. in Cell Biology and Molecular Physiology at the University of Pittsburgh.

Thursday, 08 August 2013 11:42

Biology Commentaries in Space and Time

How big is an antibody? An illustration in a biology textbook might depict an antibody that's a third of the size of a cell, 150 times larger than an antibody actually is in relation to a cell. Of course, it would be impossible to draw an antibody to scale in a textbook. Even if the illustration of the cell took up an entire sheet of 8 ½ x 11 inch paper, the antibody would only be about 0.02 inches, a speck too small to see. So how can one get a sense for the size of proteins on the surface of cells in the body? Michael Reth, professor at the Albert-Ludwigs University of Freiburg and the Max Planck Institute, gives readers a mental image in a commentary in Nature Immunology.

The sun floods into the Physiology course break room at the Marine Biological Laboratory (MBL) less than a block away from the narrow inlet between the mainland and Naushon Island that gives Woods Hole, MA, its name. Woods Hole is at the shoulder of Cape Cod, a popular summer vacation destination. In the harbor, vintage sailboats carry sunbathers, giant ferries take tourists to Martha's Vineyard, and the MBL work boat brings squid harvested from Vineyard Sound to neuroscience labs. But the 27 graduate students and postdocs who are enrolled in MBL's legendary Physiology course have little time for the sights. Instead, the students use the break room to refuel, analyze data, and argue about PALM vs. STORM or the latest on tropomyosin. Then it's back to the Physiology lab where the students live 16 hours a day for seven weeks. Asked about a famous beach up the road, a Physiology student sighed, "I've been there once."

Dear lab rat,
If you found this article on Facebook (or Twitter or Reddit or Google Plus or whatever social media site you prowl), you can stop reading right now and hit ctrl+P. Then slip the printout onto your PI's desk. Done? Thanks, you've just helped to advance scientific communications. Now go finish your western blot so you can graduate.

For nearly 30 years, cell biologists have investigated—and argued about—how proteins move through an organelle that resembles stacks of pita bread, the Golgi apparatus. The Golgi, named for its discoverer, the great Italian microscopist, Camillo Golgi, is a series of protein processing and sorting compartments in which the pita pockets are called Golgi cisternae. The apparatus though works less like a bakery and more like a series of factory buildings where important accessories are added to proteins. Inside each factory building, specialized workers (enzymes) add different modifications and sort the cargo (proteins).

The name "Sonic hedgehog" may conjure up images of Sega's blue videogame character, tumbling across a screen and collecting gold rings, but its namesake, the human gene Sonic hedgehog, encodes a protein (SHH) whose role in the body is anything but light entertainment.

Under a microscope in Ghana, deadly pathogens look beautiful. Little squiggles of green and blue highlight the cell nuclei of trypanosomes, the protozoa responsible for African sleeping sickness. For the past two weeks, 26 West African students learned skills and techniques that will help them conduct research on these and other infectious pathogens. The courses took place June 17- June 29, 2013, at the University of Ghana, a few miles outside Accra.

Fundamental knowledge of biology is what drives the pharmaceutical industry, James Sabry, Vice President of Partnering at Genentech and an ASCB Council member, told a Biomedical Research Caucus briefing on Capitol Hill Wednesday. And yet the kind of primary research that yields new insights into fundamental biological mechanisms is government-funded through agencies like the National Institutes of Health (NIH), Sabry said. "We can't get a grant from the NIH at Genentech. The money doesn't come to us directly. What comes to us is basic knowledge. Without that, our industry would come to a grinding halt in the United States."

Tuesday, 25 June 2013 08:49

Too Many Centrosomes Cause Microcephaly

Tiny and seemingly simple organelles can cause big problems for an organism, if they get out of control. The centrosome, composed of just two barrel-shaped centrioles and a mass of proteins in human cells, forms the microtubule organizing center that regulates cell division (cytokinesis). During cell division, two centrosomes at opposite poles of the cell work together to position the mitotic spindle. An increase in the number of centrosomes is "a hallmark of human tumors," according to Véronique Marthiens and Renata Basto at the Curie Institute in Paris who report in Nature Cell Biology on their surprising results in mice after adding extra centrosomes in the cells of the developing central nervous system (CNS).

Elizabeth Iorns is on a mission to kill mutant sperm. She hopes to prevent transmission of hereditary breast and ovarian cancer by eradicating sperm carrying a specific gene mutation. Frustrated with traditional grants and private funders, Iorns raised $10,242 from 53 individuals through crowd-funding on Microryza. In return, she promised to share the chronicles of her research with her online supporters.

Page 6 of 6